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ABSTRACT
g

The objective of the Project Fire study reported herein is
to predict theoretically the state of the gas in the flow field sur-
rounding an Apollo type vehicle entering the earth's atmosphere at
hypersonic velocity and to predict the related radiative and con-
vective heating rates and their distribution over the body. 1In
this study, two points on a nominal re-entry trajectory are con-
sidered. In the first case, the aerodynamic velocity is 34,582 fps
and the altitude is 171,111 feet. Under these conditions, the
chemistry is expected to be in equilibrium over the blunt body
and the flow field is analyzed by Dorodnitsyn's method of integral
relations as applied to the hypersonic blunt body problem. The flow
over the back of the body is computed by the method of characteristics
assuming attached flow. The second point on the trajectory is at an
aerodynamic velocity of 37,439 fps and an altitude of 259,113 feet.
The flow field in this case is not in equilibrium and the solution
takes full account of the nonisentropic interaction between the
chemical reactions and the flow field. The flow equations are
again made manageable through the method of integral relations;
chemical kinetic and vibrational non-equilibrium equations are

integrated directly. Based on the flow field calculations the
convective and radiative heat fluxes are determined. /6)

il




PROJECT FIRE FLOW FIELD PREDICTION AND ANALYSIS
PREFACE

In order to expand the technical base upon which the Project Fire
reentry heating data will be analyzed, contracts were awarded to the
Lockheed Missiles and Space Company, the General Electric Company,
and the Philo Corporation (Contracts NAS1-3417, 3418 and 3419 respec-
tively) to compute th§ flow field about the reentry package along with
the associated magnitude and distribution of radiative and convective
heating for selected points on the nominal reentry trajectory. The
contracts, which were awarded as a result of competitive bidding,
provided for independent analyses embracing a number of different
methods. Copies of the computing machine programs used have been
supplied to NASA.

All contractors performed the necessary computations for the con-
ditions defined at the time the maximum radiative heating rate is
expected (t = 25 seconds, V = 34,582 ft/sec, h = 171,611 £t, and
a = O°). Lockheed also made calculations for a 5° angle of attack .
case. In addition, calculations were made by Lockheed and Philco for
the point at which the maximum radiation from nonequilibrium gas
chemistry is expected (t = 15 seconds, V = 37,439 ft/sec, h = 259,113
ft, and o = 0°). The two above conditions were obtained from a pre-
flight trajectory and do not reflect the exact conditions for Flight 1.

These independent predictions made for identical conditions of
reentry-body size and shape, altitude, and veloclity are expected to
be very useful not only in the interpretation of the Project Fire data
but also to provide, for the first time, a direct comparison between
the different theoretical approaches employed.

Copies of the reports by each of the three contractors have been
reviewed by LRC. : .
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SECTION 1

INTRODUCTION

The objective of the Project Fire study reported herein is
to predict theoretically the state of the gas in the flow field sur-
rounding an Apollo type vehicle entering the earth's atmosphere at
hypersonic velocity and to predict the related radiative and con-
vective heating rates and their distribution over the body. 1In this
study, two points on a nominal re-entry trajectory are considered.
In the first case, the aerodynamic velocity is 34,582 fps and the
altitude is 171,111 feet. ©Under these conditions, the chemistry is
expected to be in equilibrium over the blunt body and the flow field
is analyzed by Dorodnitsyn's method of integral relations as applied
to the hypersonic blunt body problem. The extent of any non-equilibrium
region at this flow condition was estimated to be less than 3% of the
shock layer based on the normal shock studies of Allen, Rose, and Camm.(l'l)*
Properties of the gas in equilibrium condition are determined by analytical
expressions which have been fitted to the thermochemical equilibrium gas
tables. Since the solution for Case I involves the determination of the
heat flux over the entire body, the portion of the flow beyond the corner
was computed by the method of characteristics. The expansion at this
corner is very rapid, and thus it was assumed that the chemistry became
frozen along a ray normal to the body at the corner, but variations in
composition and the resulting frozen heat capacity ratio along this line
were considered in the frozen characteristic solution. The second point
on the trajectory is at an aerodynamic velocity of 37,439 fps and an
altitude of 259,113 feet. The flow field in this case is not in equilibrium
and the solution takes full account of the nonisentropic interaction between
the chemical reactions and the flow field. The flow equations are again

made manageable through the method of integral relations; chemical kinetic

*Superscripts refer to references.



and vibrational non-equilibrium equations are integrated directly. To
make a proper description of the flow field and, especially, of the
radiative species, a critical evaluation of the best available rate data
and extrapolation for important chemical reactions have been made.

In the calculation of radiative heating, a preliminary examina-
tion of the radiative properties of air at these temperatures and densities
indicates that the air will be optically thin so that reabsorption of
the radiation need not be included. After completing the computation
this was not found to be true at all wavelengths. Radiation mechanisms
that are considered include molecular band transitions and continuum
radiation resulting from electron-neutral and electron-ion free-free
transitions, photo attéchment of electrons to oxygen atoms, and electron-
ion free-bound (deionization) transitions. The spectral distribution of
radiative flux is determined in 2000 cm-1 intervals and integrated over

all wave numbers at the selected vehicle locations to obtain the local

total radiative heat flux. The convective heating at the stagnation

(1.2)

point is calculated by the analysis of Hoshizaki. The laminar flow

heating distribution is calculated by a step-wise solution of Lees'

(1.3)

while the turbulent boundary layer heating is calculated
(1.4) |

For the solutions in-

technique
by the method of Rose, Probstein and Adams.
cluded, the flow was laminar throughout.
One of the most difficult aspects of the Project Fire Case I
and II1 problem was the prediction of the subsonic and transonic flow
fields. The equations of motion describing the inviscid adiabatic hyper-
sonic flow over a blunt body are of the mixed elliptic-hyperbolic type and
are exceedingly difficult to solve. The types of numerical solutions that
can be used to solve the blunt body problem are usually classified as

(1.3) In the inverse method, the shock shape

inverse and direct methods.
is initially assumed known and the flow variables are expanded in a
series and integrated from the shock to points in the flow field
corresponding to the body streamline. Although the inverse solution

is exact, the problems of convergence of the series and of the extreme
sensitivity of the resulting body shape to the assumed shock shape have
limited the application of the method. The source of the convergence
problem has been identified and can usually be avoided,(l‘s) but the

problem of assuming a shock shape to give a complicated body geometry

such as the sharp or abruptly rounded shoulder associated with the
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Project Fire re-entry body is presently not possible. It is this abruptly
rounded corner body characteristic that necessitates the use of the direct
method in the Project Fire problem. In the direct method, the body shape
is specified and the shock shape and shock layer properties are calculated.
Although a number of direct methods have been proposed in the literature
(i.e., streamtube-continuity iteration methods and relaxation techniques),
perhaps the most successful and powerful direct means of handling these
equations is by the method of integral relations due to Dorodnitsyn.(l'6)
This method is particularly useful for bodies with a sharp or abruptly
rounded shoulder,and, hence, has been selected to calculate the Project
Fire thermochemical equilibrium and non-equilibrium flow fields. Before
proceeding to the description of each of these programs a few general
remarks about the method of integral relations as applied to the blunt

body problem will be made.

The method of integral relations is used to transform the
partial differential flow equations to a system of approximate ordinary
differential equations. This transformation is accomplished by dividing
the region between the shock and the body into N strips and integrating
the partial differential equations with respect to the space variable
in the strip direction. The integrands are then approximated by inter-
polation formulae involving the integrand values at the strip boundaries
and a set of ordinary differential equations is obtained. To minimize
the errors introduced by the integral approximations, the strips should
be taken in the direction in which the flow quantities have the least
variation, since the values of the flow variables obtained in the inter-
polation direction are less accurate than those calculated in the direction
of integration. In hypersonic equilibrium and frozen blunt body flows,
the major property variation occurs along the body rather than across
the shock layer, and, hence, the strips should be taken normal to the
body (Scheme I). A second feature of the integral relation hypersonic
flow field solutions is that a one strip approximation usually gives
quite accurate results.(1°7) Thus, an accurate thermochemical equilibrium
hypersonic blunt body flow field solution can be obtained by approximating
the region between the shock and the body as a single strip. In the non-
equilibrium solution, on the other hand, the flow properties vary con-

siderably from the shock to the body, and, hence there is strong



justification for taking the strips in the body direction (Scheme II)
rather than normal to the body (Scheme I).(1*7) The first approximation
non-equilibrium solution reported here, however, utilizes a single strip
taken in the direction normal to the body. There is some justification
for this assumption in the single strip approximation, however, since
one need only integrate the flow and chemical kinetic rate equations
along the axis of symmetry and body streamlines and a considerable
simplification is obtained with little sacrifice in accuracy. The

axis of symmetry integration quite accurately establishes the shock

layer flow properties and the fact that all integrations are accomplished

on streamlines minimizes the numerical integration stability problems
associated with the finite chemical reactions.
A description of the analytical methods as well as the

numerical results for the two cases studied are presented in this report.




SECTION 2

DISCUSSION OF ANALYSES

A description of the analytical methods utilized in the
determination of the Project Fire Case I (thermochemical equilibrium)
and Case III (non-equilibrium) solutions is presented in the following
sections. These analyses developed for both equilibrium and non-equilibrium
conditions include the.determination of the inviscid subsonic flow field
for an axisymmetric, hypersonic blunt body by the method of integral relations,
the determination of the non-equilibrium gas properties, the computation
of the gas radiative properties, and the computation of the convective heat
flux. 1In addition a discussion of the so called '"second order effects"

is included.

2.1 EQUILIBRIUM FLOW FIELD PROGRAM

There are a number of important blunt body re-entry trajectories
in which the subsonic region of the flow field is in thermochemical equi-
librium (i.e., ICBM and Lunar Re-entries) and, hence, in which equilibrium
air properties must be utilized in describing the flow field. Method of
integral relations equilibrium blunt body solutions have recently been re-
ported in the literature by Belotserkovskii(2°3) and Shih and Baron.(2°4)
The integral relation equations developed by both authors are essentially
the same, and they differ only in the methods of -evaluating the equilibrium
properties. Belotserkovskii utilized the equilibrium air equation of state
developed by Naumova(z's) which gives approximate analytical equations
relating enthalpy and density to pressure and temperature over a large
property range. Shih and Baron, on the other hand, chose to evaluate the
equilibrium air properties directly from the partition functions, but to
simplify the calculation did not include ionization. The equilibrium blunt
body solution developed in this paper is a first approximation solution based
largely on Belotserkovskii's approach, with attention given to particular
applications needed here. In the first approximation the basic dependent
variables are the surface and shock velocity, pressure, temperature, shock
detachment distance and shock angle. The equations for these unknowns are

derived from two integral relations (obtained from a modified radial momentum
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equation and the continuity equation), from the shock equations and the
thermodynamic relations set out in Naumova's tables. These tables are
also needed to determine thermodynamic variables behind the shock.

Two points in the flow field require special consideration,
namely the point behind the normal shock and the stagnation point. At
the normal shock point the shock relations do not give the thermodynamic
quantities explicitly and these must be found by iteration. A plausible
value for density is first assumed. The mass conservation condition then
gives the normal velocity, the momentum conservation condition the pressure,
and the energy equations the enthalpy. The temperature is found implicitly
from Naumova's formula. The resulting value and the pressure are then sub-
stituted in Naumova's formula for the density, which should agree with the
assumed value. At the stagnation point the entropy is known (equal to the
value at the normal shock point) and the enthalpy has the stagnation value
ahead of the shock. Both these functions can be expressed in terms of pres-
sure and temperature by Naumova's tables and this yields two implicit equa-
tions for the stagnation values, which are determined by an iterative process.

For a given body and flight condition the shock detachment distance
on the axis must be chosen to satisfy one of two conditions at the body sonic
point. If the body is smooth the sonic point must be located so that the
integral curve for the surface velocity is regular there. If the body has
a sharp corner then the solution must be adjusted to attain sonic conditions
at the corner. In the latter case the surface velocity has a square root
type singularity at the point. Following Belotserkovskii's recommendations
the original procedure for finding the correct solutions on smooth contours
nas been considerably simplified. Previously it was necessary to stop a
given integration ahead of the sonic point and extrapolate the solution up
to that point by means of series expansions. These took time and labor to
construct and had to be evaluated for each choice of detachment distance,
until that corresponding to the correct saddle point conditions at the sonic
point had been determined. Under the revised procedure, as applied to the
first approximation, the integration corresponding to each detachment distance
is continued until either the velocity derivative changes sign or, until
it attains the value unity. The desired integration always lies between
those satisfying these two conditions so that progressively closer lower
upper bounds on the detachment distance can be found. No extrapolation
and series expansions are required to carry out the new scheme. The various

aspects of the program are described in the following paragraphs.
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The description of the equilibrium flow field program is divided
into four major parts: (1) basic flow equations, (2) thermochemical
equilibrium gas properties, (3) boundary conditions and the numerical
integration procedure, and (4) shock layer properties.

2.1.1. Basic Flow Equations

The steady adiabatic inviscid flow equations have been written in
streamline or boundary layer coordinates. In this orthogonal coordinate
system, which is shown in Figure 1, the body is assumed to be axially
symmetric, "s'" is the arc length along the body measured from the axis of
symmetry and '"n" is the normal to the body measured from the body surface.
We also use the coordinates, y, #, where y is the distance from the axis
of symmetry to the poiﬁt (s,n), and § is the angle between the tangent to

the body and the axis of symmetry.
The flow variables u and v are the velocity components in the n
and s directions respectively. The thermodynamic variables, ;, ; R E, E, T
denote pressure, density, enthalpy, specific entropy and temperature
respectively. The angle between the shock wave and the axis of symmetry
is denoted by & . The flow quantities are in dimensionless form with
velocities referred to the maximum velocity, qmax’ the density P referred
to the frees;ream density, ZZ ; the pressure p referred to twice the dymamic
head, f: 9. the temperature T referred to q /Rm , the enthalpy, h,
referred to the stagnation enthalpy, q /2 and entropy S referred to Re /2.
Here Ra. = RO/MW, where Ro is the unlversal gas constant and ﬁﬁ- is the
molecular weight of the freestream gas. All lengths are made dimensionaless
by referring them to the body radius of curvature at the stagnation point.
The flow equations utilized in the equilibrium program are con-
tinuity equation, the n-momentum equation, Bernoulli's equation or the energy

equation on a streamline, the equation of state and the conservation of

entropy equation.

The continuity equation in boundary layer coordinates is(2°11)
n
2 pv) [ 4 (ypu L+2D) _y )1
ds dn

while the n-momentum equation is
n

2 (1+3) J
v-j-—+(1+—)u-3—%-v—R=7LTE 2.2




The first step in utilizing the method of integral relations
is to convert the continuity and n-momentum equation to divergence form.
The continuity equation is already in proper form and the n-momentum equa-
tion is transformed to the divergence form by combining it with the continuity
equation. To simplify the notation, the continuity and n-momentum equation

in divergence form are expressed as

oA J(AL) _

3 s + S 0 2.3
and

D7, J(AH _ -

ds Jd n .

where the new variables are defined as

Z=yp u

H=Y(P+PU2)

A=ypv

L=ypu

Y = (G/R) + (Ap cos §) 2.5
G=y(p+pv2)

A =1+ n/R

R = body radius of curvature = - ds/d¢.

In the analysis which follows, suffix 0 refers to conditions on
the body, while suffix 1 refers to conditions immediately behind the shock.

The distance of a general point from the axis of symmetry is given by
y =y, (s) +n cosp 2.6

Before deriving the integral relations we change the independent

variables in Eqs. 2.3, 2.4 from s, n, to s, f where
n = f'e 2.7

Then, i

) ) 452

*Primed quantities denote differentiation with respect to s.
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The transformed equations 2.3 and 2.4 are

oA J £ ¢ , AL, _

Js-f )f(éA)+—Jf(—¢5)_o 2.10
Z £ Jd AH

Ee S E o -y 2.11

Since f' is the distance from the body to the shock measured along the
normal, then f = 0 on the body and f = 1 on the shock. To apply the
method of integral relations in the first approximation, interpolate

linearly for A., Z and Y between the body and the shock using the formulae

A=A F (A - A)DE 2.12

z=1z + (z1 zo){ 2.13

Y=Y0+ (af1 Yo)f 2.14

then substitute in 2,10 and 2.11 and integrate with respect to { from 0 to 1.

We obtain the relations

! )

d é E .
G BA +AD) - A+ G+ A

ds £
AL -AL
11 oo _
+ —-——Tz——-—- =0 2.15
d £ (4
d_S (%(ZO + Zl)) - 3 Zl + £ (%(ZO + zl))
A1H1 - AOHO
+ ————ET————- = %(Y1 + Yo) 2.16

These may be written

- < - 2 -
.Al--Ao+ 5 (./11 Ao) (AL -AL) 2.17




1
£, . -
2, =52y -F (A H -AH)+ (Y +Y) 2.18

1
where Z =2 =20
o

The differential equations 2.17 and 2.18 can be expressed entirely

in terms of the dependent variables &, o and v,

The differential equation for € is given by the geometrical relation

=A tan (o - @) 2.19

dé
ds 1

The differential equation for v, is derived from the definition

A=Y, PV 2.20

1
Then AO = y0 Povo + yo AN + yovo -’Do 2.21

Since the body surface is a streamline, we know from the Bernoulli equation

that

dpo = - joovodvo 2.22
and from the entropy equation that
ds =0 2.23

The speed of sound, a_s is given as

dp

a§=d° 2.24
P o
Combining these equations, we obtain the equation
£o’o
d-Po_-—aZ_dvo 2.25
o

Substituting 2.21 for P o

the differential equation §or v 1is given as
o

-10-
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v Yo Py VP
= o4 O 040 2.26

]
where Y, is specified by the body geometry, and a the speed of sound

on the body streamline, is given by a

*
2 o't 2.27

o =D /oo + P

T
where D = JophT - pTh
A ; is determined giom the continuity integral relation differential
equation 2.17 where
!

' £ 2
A =-_/L1+‘Z—(_/tl -_/1_0) - (gL -AL)

To evaluate /4 , we utilize the definition
1

—/\-1 =Y P11

Then

! dp dv
-y 21ldg 1. ' e & .
A =V PN TIITE a8 TV L1 Tds J°1"1{yo*°°s‘6 ds TR Sio

1
ap
1 dor dr Y1
tyim e NP1V TR 2.28

and finally

' d
_ d& £1 do
-/\1 = p1Vy cosf G+ Yy {"1 iz T f’lvl} ds

P S ing 2.29
+ Jolvlyo + R ( v1 sin ylul) .
The final form of the equation is
dv Eo
—0 . o
ds F 2.30

*The subscript T(or p)denotes partial differentiation with respect to T(or p)

while holding p (or T) constant.
11~

}



where

E = 2.31

and
F = a - v 2.33

On the axis of symmetry, equation 2.31 is indeterminate and must be replaced

by the limiting form of the equation.
The limiting form of equation 2.3l is, when s = 0

'
E = /\-0 - v} a2 2.34

JO

To evaluate 44_0, we use equation 2.17. When s = 0 we have

" 1"
= = - .2__ ] - []
A =-A c {(AlLl) ‘AOLO)} 2.35
1 o
Now AjL) = A, p,uY
1 )
Hence (A1L1)5=0 = A1 P11,

where y, =Y, + & cosp

1

so that (yl) =1 - £ (dQ)/ds)S=O =1+ /R = A1

s=0
Hence (A,L,)' = A2 u

11 =4 L1

s=0
1 { ' = -
Similarly (AOLO)S=O oY 0

Equation 2.35 then reduces to

" " 2A P u
A =-N - —L1=11 2.36
o 1 ¢
Now, when s = 0
1"
"
A = Z, /ul 2.37

1

Here Z1 is determined from equation 2.18, namely

" _ 2_ . \ 1 '
2, = - % [(Alﬂl) (AOHO)} Y HY

-12-
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' 2 2
where (AlHl) A1 (p1 + P1% )

' 3
(AOHO) P,
[ ]
Yl = 2A1pl/R
1
Yo = 2po/R
Hence
" 2 2 2 2
Zy =€ (?“1 Py + P19 ) - pé} +r (AP * Ry 2.38

n

The equation for _/LO is then

A= (zl"/ul) - 2Af Py /€ 2.39

(o]

1"

where Zl is given by equation 2.38

From equation 2.34 and 2.30, when s =0

F ' ./L fe) ' 2
OVO = P - V0 aO
o
Hence, when s = 0
n
dv
o . Ao 2.40
ds 2 fDO

where ./LO is given by equation 2.39 and Z1 is determined from equation 2.38.
In the present system of coordinates, the differential equation for
& can be deduced from the n:momentum integral relation differential equation
2.18 and the shock boundary conditions. Since the body contour is a coordinate
line u_ = o,
o
Now Z1 = y1 jolulvl

so that

-13-
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2, = =Cp) It w (P 2.41

dy
—ai can be expressed in terms of g—f— from equation 2.6, the definition
s

d . .
of y. The term s (_plulvl) can be expressed in terms of & using the

shock boundary condition. At this point we introduce equations relating

the boundary layer coordinate velocity components to the velocity components

9. > 9, tangential and normal to the shock.
g
Thus,
u; =q_ sin (o-9) - q, cos (o-9 2.42
g
vl=qtgcos(J-¢)+qn51n(d'-¢) 2.43

The conditions across the shock are given by

Continuity

P, = 9y singd 2.44
Momentum
Normal: P = Pp - yqnz + (q, sino )2 2.45a
Tangential: 9, = 9g cos ¢ 2.45b

g

Energy

h=1- q2 2.46

In this derivation, p and T are assumed to be the independent properties

where h and p are known functions of p and T. From the shock relations,

we find
dp
1 . 5
i JZ - q, sinc dqn/da’ 2.47a
dT1 B
T = (/b)) [Jl - b (4p/d@) - 2 q,(dq,/dT )] 2.47b
P1_ dr,/d
R AC N SR S 2.8
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dqn q@hT cosa qn(Dc5-2+ '/OT 1)

do phT - qn(DqQ sind + Zqun)

where D= PphT - PThp

52 = Jl - qnq” cos g

From equations 2.42 and 2.43

ds do

or
M, 4, a8
ds 1 ds 1 ds
and
dvy do a¢
& o1 d Y as
where dq dqn
U1=_-gda‘ 51n(f-¢)-(—i-d-7-cos(d'-¢)+v1
dq dqn
Vlz—_gdd cos(a’-Q))+d—51n(0"—¢)-u1

Substituting for du and dv in equation 2.41, we find that

ds ds
' dy dp
1 1 da dr
2= (P 3 YY1 ar as Y A U s P11
da 2 dp
A Y1t A1Y s
-15-

du dq dq
-£={—tasin(er- P) - 55 cos( T - @)} %‘f—+ {qt,cos(f- )

2 ¢
ds

2

.49

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59




Differentiating equation 2.6 with respect to '"s'", we obtain

——dyl = —dyo + cosP 48 sinf a8
ds ds ds ds

and solving equation 2.59 for do¢ /ds, we find that

do

c

d0 1
ds B1

c. = Z' - u.v, cosf dé u,v EZQ
1 1 - At ds P1%1%1 s

1 2 2 .
TR {yl PO - A 55”‘#

and Z1 is given by integral relation equation 2.18

dp1
B=y 1 Wi ds t AU T A V)

2.60

2.63

As was the case for the velocity derivative, d o /ds is indeterminate on

the axis of symmetry and the limiting form must be used.

Equation 2. 61, when s = 0, is written

gi:—l—-
ds !
B
Now, from 2.62, when s = 0

! " do 2 2
¢, =2 ALYV TRM PN

From 2.63
B. = A
p =4 PN
Hence, when s = 0

2

ds -F1u1V12A1

where Z1 is again determined from equation 2.38.
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2.1.2, Thermochemical Equilibrium Gas Properties

The equation of state utilized in the equilibrium solution was
obtained from analytical functions of the thermodynamic properties of air

(2.5) The independent properties are temperature and

given by Naumova.
pressure and cover the property range of 300°k € T < 20,000°K and
.001 atm € P 1000 atm. This property domain covers the environmental
conditions encountered by re-entry vehicles for an extensive range of
speeds and altitudes. This approximate equation of state includes
dissociation and ionization and correlates within one percent of results
obtained from a free-energy minimization thermochemical equilibrium
computer program (Ref. 2.6). This is one of the most useful equilibrium
real gas subroutines currently available in this country, not only because
of its high accuracy and wide range of gas properties, but because it re-
quires a very small amount of computer memory space and calculation time.

The details of the property analytic functions and the required
property derivatives are given in Appendix A and B respectively. The dif-
ferential equations describing the rate of change of the thermodynamic
properties along the shock and the body are given below.

The shock property differential equations are obtained from equa-

tions 2.47a and 2.47b and are given as

dp dq
Bl de | —ndo
—= 5,55 - q_ sinc T2 2.65
and
dT
1 _ 1 _ _ do
ds (hT) {;ﬂ_ hp(dp/dd') 2qn(dqn/da')] e 2.66

The body property differential equations are obtained from the Bernoulli

and energy equation on the body streamline and are given.as

dp° dv

——nam— = - -J

ds Joovo ds 2.67
dTo 1 dvo

—d—s- T - .t,_T (2 - ﬁohp)vo F 2968

Once p and T have been found, the thermodynamic variables p and h are

determined from the equation of state.
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2.1.3. Boundary Conditions and Numerical Integration Procedure

In the first approximation integral relation equilibrium blunt
body solution, we have to solve the seven simultaneous first order non-
linear ordinary differential equations given by equations 2.19, 2.30, 2.61,
2.65, 2.66, 2.67, and 2.68. The dependent variables are €, o0, Vs P T,
P,e To and the independent variable is s. To complete the formulation of
the problem, the boundary conditions must be specified. In the equilibrium

blunt body problem, the values of o, v, Ppo Tl’ P, To are specified on

the axis of symmetry where s = 0. The detachment distance & » however,

is not known initially and the final boundary condition is determined by

the sonic point on the body. Thus the blunt body flow equations represent

a two point boundary value problem in which the boundary conditions are
given on the axis of symmetry and at the sonic point. The sonic point
boundary conditions differ according to whether the prescribed body contour
is smooth, with continuous slope, or sharp with discontinuous slope. For
smooth corner bodies, the sonic point boundary condition requires a singular
solution that passes regularly through the singular sonic point on the body.
For sharp corner bodies in which the corner occurs before the smooth corner
sonic point, the boundary condition is that the flow be sonic at the corner.
The calculation procedures used to establish the required boundary conditions
are as follows:

Stagnation Streamline Boundary Conditions

At s = 0
a‘=17'/2
v =0
o

Normal Shock Properties

pl and T1 are determined from an iterative solution of the momentum,
2.44, energy 2.46 and state equations across a normal shock and this procedure
is described in detail in Appendix C.

Stagnation Point Properties

The stagnation point properties are uniquely determined by the
stagnation enthalpy which is given by the freestream conditions and the
stagnation streamline entropy which can be calculated from the normal shock
properties. The procedure for determining P, and To from ho and So is given
in Appendix C. The procedure for determining the entropy from the pressure
and temperature involves the evaluation of an integral equation which is
quite time consuming on the computer. A more efficient method of evaluating

t he stagnation properties is obtained by noting that the properties between
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the normal shock and stagnation point do not change appreciably and, hence,
the compression process is characterized by a constant real gas isentropic
exponent. The pressure at the stagnation point is thus given in terms of

Pis P12 Y% > ¥ by the equation

o 2 /2 2 2 3
0+l = |+ } oo +2-'X o ... 2.69
Py 2, 2 'y 2 ) 3T (2,

\ P1 "1 PPN Py A

where the first three terms give the stagnation pressure to four significant
figures. Given the stagnation pressure and enthalpy, the stagnation temperature

is determined by an iterative, the procedure given in Normal Shock description

of Appendix C.

Sonic Point Boundary Conditions

Case (i) Smooth Contour

Equation 2.30 has a saddle point singularity at the sonic
point on the body and the remaining condition needed to fix the solut;on
is that the integral curve for v should be regular at this point. This
condition determines the shock detachment distance 6- on the axis. The

required regular solution is found by the following iterative procedure.

Firstly, estimate a plausible value of fi . With this and the other
known initial values on the axis of symmetry integrate equations 2,19, 2.3
2.61, 2.65, 2.66, 2.6/ and 2.68 numerically (a fourth order Runge-Kutta
scheme was used in the present program) until either (a) EO = 0 or (b)

Fo - EO changes sign from positive to negative. 1If (a) is satisfied,
increase § by one unit in the last figure, or if (b) is satisified,
decrease g_ by the same amount and repeat the integration. Continue until
two successive runs are obtained with one in category (a) and the other in
category (b) The corresponding values of €l are then upper and lower bounds
of the required detachment distance. The integration should now be carried
out with the mean of these two values. This run will also be in (a) or

(b) so that closer bounds on the true g: can be found. This procedure

can be continued to determine 6. to any desired degree of accuracy. Once
this value of e. has been found the integration can be continued beyond
the saddle point as follows. Stop the numerical program one step ahead

of the estimated saddle point and use results upstream to extrapolate
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values of the dependent variables one step beyond the point, then resume

the numerical integration.

Case (ii). Sharp Corner

In the sharp corner case the sonic point on the body is no longer
determined by regularity conditions but is fixed at the sharp corner. This
means that in Eq. 2.30 Fo = 0 at a fixed "s" and it is impossible simul-
taneously to satisfy the condition E° = 0, so that dv,/ds has an infinite
derivative. It can be shown that v, approaches the sonic speed in proportion
to the square root of the distance from the sonic poiné?‘7) Accordingly,
for a plausible choice of GL the integration of equations
2.19, 2.30, 2.61, 2.65, 2.66, 2.67 and 2.68 is continued until either
(a) E = 0 or (b) a - v, < 0.1 a_ - 1f case (a) applies reduce the detach-
ment distance until a run in category (b) is obtained. For this run,
stop the integration at the first point where conditions (b) applies and
extrapolate a - Voo using the square root law up to the point a -v, = 0.
If this is upstream of the required point, repeat the integration with
an increased detachment distance. Correspondingly, if the point is down-
stream of the sharp corner, reduce the detachment distance. A few iterations
are sufficient to find the value of é;b giving sonic conditions at the sharp

c ormner.

2.1.4. Shock Layer Property Calculation

The first approximation integral relation solution completely
specifies the properties p, T, h,,P, u and v at the shock and on the body,
but does not give the properties in the shock layer. Since there are six
unknown flow field properties p, T, h, £, u and v, six independent equations
are required. Although any combination of the conservation equations
and integral relation approximations could be selected, the simplest set
was selected for this program; namely, the linearized set of algebraic
equations for A., &, and Y, and, the energy equation and the equation of

state. The required equations are:

2 = y}’uv=31(s)§ 2.70

Ay pve At [ A 0 - A, ] 2.71

-20-
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+ V2

Y = X‘(LR'('S'{L)' + (1 +f§-((-3> p cos(s) = Y _(s) + (Yl(s)-yo(s))}' 2.72

where zl’“413 410, Y, Yl’ R, £, @ are all known functions of s.

o
2 2
h+vi+u - =1 Energy Equation 2.73a
L=p®,T)
h="h (p,T) Equation of State
y = y,(s) +f£ (s) cosf(s) Geometry 2.73b

where yo(s), E (s) and P(s) are given functions of s. Therefore, the

unknowns are

h, po P T, v, u, y = £( §,58)

A sketch of the body and shock geometry is shown in Figure 1.

To solve the equations at a given point in the shock layer (s,‘f ) an

iterative scheme will be used.

(a) For a given point in the shock layer (s, f ),

(b) Find u from

2. f
A, (s) + (AN, (s) -_/LO(S))f

u =

(c) Assume

v o= v () + (vi(s) - v (NF
(d) Calculate

h from equation 2.73a

(e) Calculate P from equations 2.71 and 2.73b

(f) Find p and T given P and h from an iterative procedure using

the equation of state.
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(g) Calculate a new v from equation 2.72 where

2 __R(s) - . _€(s)
VT T (y(s) [Yo () + () = YOf - L+ § 55 peos b (S)] i

(h) Substitute this new value of v into step (d) and repeat the cycle

o |7

until v converges with 0.5%.

When s = 0, these equations become indeterminant and the following equations

must be used.

(a) Same
an y

(b) u = 1 ‘ where 2", _A " _A " are known

"oy "o " 1’ 1 o ’

o (447 Ho )f functions of s.

(c) v=20

(@ h=1-u’
B + {pl (L +&) - po}f

(E) P= 1 + Fé:

(f) Same

2.2 NON-EQUILIBRIUM FLOW FIELD PROGRAM

The treatment of general non-equilibrium flow of air, or other
multi-component gas, past blunt bodies requires more far reaching changes
to existing methods than those sufficing in the frozen or equilibrium chemis-
try regimes. The chemical kinetic effects influence the fluid motion,
cince reaction rates depend on the streamline pattern and the velocity field.
Several authors have recently considered non-equilibrium effects in blunt
body flows. Freeman (Ref.2.8) treated the flow of the ideal dissociating
gas introduced by Lighthill with a single reaction obeying a simple rate
equation. This is an extension of the treatment of perfect gas flow by the
Newtonian approximation. Lin and Teare (Ref.2.9) calculated reaction rates
round a blunt body with a predetermined pressure field and streamline pattern;
they therefore neglected any interaction effects. More recently Lick
(Ref. 2.10)generalized the inverse method to treat a reacting gas including
dissociation and recombination. Wurster and Marrone, and Hall, Eschenroeder
and Marrone (Refs. 2.11,2.12,2.13,2.14,2.15) in a series of detailed studies
extended Lick's treatment to deal with higher order reacticns allowing for

vibrational degrees of freedom out of equilibrium and for ionization,
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In the present paper the direct integral relations method is
extended to treat non-equilibrium flow past blunt bodies of revolution.
Chemical kinetics are treated in essentially the same general manner
proposed by Wurster and Marrone and attention is focused on the changes
required in the method of integral relations to handle a multi-component
gas. To an extent the fluid motion equations can still be treated separately
from the chemical kinetic equations since the latter do not contain any
derivatives of pressure, density or velocity components. The method of
integral relations is only applied to one momentum equation and the con-
tinuity equation. The chemical kinetic equations are integrated as they
stand. At each stage of the integration the kinetic equations are treated
first to determine the new species production rates. The latter are then
introduced into the energy equation to obtain increments in the flow
velocity variables. The remaining equations are then handled in much the
same manner as in the perfect gas case. The direct method is applied in
t he first approximation in which certain combinations of the flow variables
are assumed to vary linearly between the body surface and shock wave. The
equations of motion are satisfied exactly on the body surface and the
shock wave. Immediately behind the shock wave it is assumed that the
translational and rotational energy modes are in equilibrium and that
the chemical species and the vibration energy modes are frozen at their
freestream values. Therefore, the values of the flow variables at the
shock can be determined from the Rankine-Hugoniot equations for a constant
specific heat perfect gas. The body properties and the shock shape are
determined from the Bernoulli equation, the Rankine-Hugoniot shock equationms,
the geometry, and the r-momentum and continuity first approximation integral
relation equations. The resulting system of equations to be solved consists
of seven simultaneous first order non-linear ordinary differential equations.
All but one of the boundary conditions needed to integrate these equations
are given on the axis of symmetry. The remaining condition 1is determined
from the condition of tramsition through the sonic line. The equation
for the transverse velocity component on the body surface has a saddle point
near the sonic line and it is required to find integral curves passing
regularly through this point. The shock detachment distance is adjusted

until the required sonic behavior is obtained.
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Recently, two direct solutions of the blunt body problem have 1
appeared in literature. The treatment of non-equilibrium hypersonic flow past
blunt bodies by the method of integral relations has been considered by
Belotserkovskii and Dushin (Ref.2.16). They applied the method to flow
of dissociating air, using the second scheme, in which the integral
relations are evaluated along strips parallel to the body surface, while
the actual numerical integration is carried out along normals to the sur-
face. As previously mentioned, a number of arguments can be offered in
support of the second scheme since concentrations vary much more rapidly
normal to the body than they do parallel to it. However, the number of
shock and body points determined by the scheme is limited by the order of
the approximation. The second approximation given three points, the third
four and so on. Calculations of non-equilibrium flow using the first scheme
have been carried out by Shih and Baron (Ref. 2.4). They use the first
approximation with a low temperature (no ionization) air model containing

six chemical reactiomns.

In the present paper the integral relation method is applied
with the first scheme to a complex model of air, appropriate at the ex-
tremely high velocities and altitudes associated with parabolic velocity
earth re-entries. The chemical kinetics used to describe the air gas
model include coupled vibration-dissociation relaxation, atom and charge
exchange and atom and electron ionization. The description of the non-
equilibrium program is divided into four major parts: (1) Basic Flow
Equations, (2) Chemical Kinetic Rate Equations, (3) Boundary Conditions and

Numerical Integration Procedure, and (4) Shock Layer Property Calculation.

2.2.1. Basic Flow Equatiens

In non-equilibrium blunt body flow solution, the steady adiabatic
flow equations have been written in spherical polar coordinates and made
dimensionless by referring the flow quantities to free stream stagnation

quantities. Although boundary layer coordinates are probably more convenient

for arbitrary body contours, the flow equations for this problem were
treated as a simple extension of a spherical-polar coordinate perfect gas
solution(217) and hence it was convenient to retain these coordinates. The
dimensionless variables are defined in the list of symbols and in the sketch

of the coordinate system in Figure 2.
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The flow equations used in the first approximation non-equilibrium
solution are the continuity equation, the r-momentum equation, Bernoulli's
equation, the energy equation, the state equations, and the chemical reaction

and vibration energy rate equations.

The continuity equation in spherical polar coordinates is

—3—r—(r2fu sin 8) + 39 (rjov sin 8) = 0 2.74
while the r-momentum equation is
du  , ou Qu _pv , 9dp _
puar +'Pr 0 ” + k e 0 2.75

As was noted in Section 2.1 a., the continuity and r-momentum equations
must be converted to divergence form., In simplified notation, the divergence

form of the continuity equation is

—37 (r? h sin 0) + -ST (rt sin ) = 0 2.76

while the divergence form of the r-momentum equation is

-——é——- (r2 H sin 8) + J (r Ssin8) - r g sin 8 =0 2.77
ar D)
where
H=kp + f>u2
s = puv
2.78
t = Pv
h = pu
g = 2kp + }wz

The method of integral relations is now applied to the continuity
and the r-momentum equation, Firstly, the independent variables are changed
from r, @ to ‘f, 8. Applying the first approximation, these equations, are
integrated with respect to f' between the limits O and 1. The unknown functions
in the integrands t, s and g are assumed to be linear functions of f . The
coefficients in these functions depend on their values on the body surface
(suffix 0) and at the shock (suffix 1). The integral relations relate the

derivatives of these coefficients with respect to ©. The integral relation
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obtained from the first approximation continuity equation is

Yok

'*—-_LB_J_Q__ '
t 31 ty + 51 2.79

o (3, D 1

where

' '
B -G oy £ [(3,21 e éﬁL_l_L_o_]tl ) 50

BERY) 3 (3,1) (3,1) &
' 2 2
3 (2,1) r 6 (1,1) h1 6 (1,0) hO
- t 8 + ————— t - +
0 (3,D € 0 G,1) € (3,1 £
1
'
The expression for t1 is obtained similarly to Jﬂ.l derivation in
Section 2.1 a. The definition t1 is combined with the shock relations
(see p.30) giving
! 1
t, =G, o - h1 2.81
where
2 2
_ 2 (1 - 90 ) cot ¢ cosec o
¢, = A 2 2 Vit ™ 2.82
1+ (1 -q) cot™ @
©
The integral relation r-momentum differential equation is
! (3,2) 1
s, = - (3.1) Sy +-q1 2.83
where . r'
3,2 & (3,2) 3(2,1) _o
o’ = - - 2 - 2
TG (1% g (3.1) ot ® (3,1) & !

2 H 2 H
3(2,1) Yo 6(1,1) 1 6(1,0) o
- [cot 0 + G0 JSO - +

(3,1) £ (3,1) &
(3,2)
te, Y G, Bl 2.84

The differential equations (2.79) and (2.83) can be expressed
entirely in terms of the dependent variables £, @ , us Vo Py })O,

the species concentrations Jj,and the species vibration energies ej.

*The prime superscript refers to differentiation with respect to 6.
*%(a,b) = ar_+ b & .
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The differential equation for detachment distance, £, is given

by the geometrical relation

dé '
I (ro +€) cot ( o+ 0) 2.85

The differential equation for v, is derivated from the energy
equation, the Bernoulli equation and the equation of state.

Energy Equation

In dimensionless form the energy equation is

kH + % q2 = % 2.86
S
where H = Z Y, h 2.87
and hee =c T+ (ng - 1)e +h. 2.88
Per « A4 ul

The perfect gas equation of state is

T = =B 2.89

If we define

c = 2.90
Por 2
S
Z Loy,
and T ==l 2.91
P s

and we combine the differential form of energy and the equation of state

we find that for the body streamline

\'4
vo-—-—+—-—2( +kH' =0 2.92
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8
where #' = 7 [h, - crl e 2L o - nel 2.93

Vet
of =] o =f+1

The derivative dpo/dQ* is given in terms of dvo/dQ by the Bernoulli

equation
d d
_&=_‘€V0_VQ 2.94
de k de )
and the expression for djoo/dO is obtained from the definition of to
and is given as
' t' PV'
- _9o _ 0 0
joo Y v 2.95
o o
When these equations are substituted in the energy equation 2.92, the
following equation is derived for vo'
dvo Eo
% -F 2.96
0
kc v P o' A
wher> E = —B2° raraiie 2.97
© (c - 1) Lot c
p
and F = a z . v 2 2.98
0 0 )
ke p
where a % = —_—90— 2,99
(cp - 1) '-Po

On the axis of symmetry dvo/dQ is indeterminate and must be
!
replaced by a limiting form of the equation. Since HO is an even function,

the equation reduces to

dv - t

o
a0 -Po 2.100

*In this study, the original first approximation solution was obtained by
simplifying a second approximation formulation in which it was necessary
to evaluate p' from the © -momentum equation integral relation. In the
first approxigation, however, the B-momentum integral relation introduces
approximations that need not be made, and, hence, the Bernoulli equation
which involves no approximations has been used.
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where the determinate expression for t ' is determined in a similar manner
o

to that described in section 2.l1a and is given by

v e .32 v L B
t, 3.1) e+ ﬂl 2.101
where tl' is given by equation 2.81 and
1 3,1) ¢ 3,1) & )

The differential equation for d o /d® is obtained from the r-
momentum equation, and the shock boundary conditions. The procedure for
deriving the differential equation is similar to that given in section 2.la
and only the resulting equations will be given here. The one major dif-
ference, other than the coordinates, however, is the shock boundary condi-
tions. In the non-equilibrium problem the shock thickness is assumed to be
small compared to the vibration energy and chemical reaction relaxation
distances and, hence, vibration emnergy modes and the chemical species can
be assumed to be frozen through the shock. Therefore, only the translation
and rotational energy modes are assumed to attain their equilibrium values
through the shock. Thus, the equation of state utilized in the shock rela-

tions is the perfect gas equation with constant specific heats. The shock

relations in non-dimensional form are(2'17)
(2 2 , 2 2
bl 2 T 1 |Ye SinT (de- 1)
) (1-49) = - 2.103
1 2 Yo 5 i .
I,, -1 l-q”
L 2
Q+1 0;-1 q
As a-ag) % 2.104
! 4, ° 2 2
o 1 1+(1-qc)cot¢r
where q,  is given in terms of the Mach number M, as
%
- : 2.105

9o
+ 1

2
2
Mp ( Jp- 1)

The resulting differential equations for d¢ /d@ is given as
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dr $; - }?(V1 -ul)

Tl D 2.106
1
1
B “l 2 2 - 1uvsin20'
where D = ——— g (1 - q_) 11
1 o -1 ® ® 2
o 1 - ql
" 2V1
+ 'Pl vim - ulf n, + — (vln1 - ulml)] 2.107
- 1 - q
1
dq d
m = E?¥ sin@ = Y cosé 2.108
dq dq
=——X -
n, q0 sin® E;; cos® 2.109
2 2 1
q =1 - ————— sin (1l - ————) 2.110
X © [— o+ 1 MZ sin%r ]
Co
q
1
q = sin 20 (1 - ———) 2.111
Y ):"+ . Mz sinzo'
%
dqX 2 Qg
ir 0’0 1 sin 20 2.112a
My e (cos 20 + ————— 2.112b
do Jo + 1 M sinzd'
(-]
u1 = qysan - qxcosg 2.113»
vl = qxsinG + qycosO 2.113b
!
and s, is given by equation 2.83. All the equations derived so far are

1

applicable to an axisymmetric body of general shape. 1In the evaluation
' ' '

of Sys S, must be determined. The equations described s, are determined
from the fact the body is treated as a streamline and, hence, the stream-
line velocity and the coordinate velocity components are related by the body
geometry. For spherical bodies s; = 0 and, this problem is avoided.
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On the axis of symmetry equation 2.106 is indeterminate and the
limiting expression for the integral equation is determined in a manner

similar to section 2.la. and is given as

1] ——
s —-(-3-4—11% 2.114

1 (3,2)
where
s - 3anth 30,02 & (308 ) 115
17 G0 & G € T2 Y302 :

2.2.2. Chemical Kinetic Rate Equations

In the non-equilibrium flow field solution, full account of
the non-isentropic interaction between the chemical reactions and the
flow field is obtained by considering chemical species and vibration energy
non-equilibrium with coupled-vibration-dissociation. The rate equations are
presented in non-dimensional form and the variables are defined in the list
of symbols. The*notation is similar to that utilized in reference 2.11 where
species concentrations Jj are given in moles per original mole of air.
The discussion of the particular reactions considered in the Project Fire
problem and the rates associated with these reactions and the vibration-
dissociation coupling model utilized are given in the section 2.3 titled non-
equilibrium Air Chemistry. A definition of the subscript notation along with the
rate equations utilized are presented here,.

Chemical Kinetic Subscript Notation

(a) Species are denoted by integers j = 1,2...s.
The j = 1,2,3..., s species are further subdivided into
j=1,... c for conservation of the kth atomic component,
and
j=c+1l, c+2, ... f for diatomic species in which
dissociation-vibration coupling will be considered,
j=f+1, ... s uncoupled species conservation relations.

Therefore
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Species j,oror

conservation of 1
kth atomic component
equations 2
total —
number of . ¢
species
coupled vibration- c+1
species dissociation (€EVD)
conservation —
equation £
No CVD £+ 1
. 5
(b) reactions are denoted by integers i = 1,2,.... r

The reactions are grouped as follows:

reactign-i, specfes j

1
§ —
coupled 2
vibration —
species dissociation 3
jec+1 (cvD) b —
total j ——

reactions

No CVD

de

CVD c, +1

_ 3

species d

j=c+ £ ]
d, +1

b

No CVD ¢

h|
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No CVD j

species
j=f+1 ... s r

Rate Equations

The system of reactions is represented as in reference 2.18 by

s S /
Z Mt 2 0
j=1 j=1

]
where Mj represents the chemical species and Jij and Jaj are the
stoichiometric coefficients of the reactants and products respectively. The
coupled vibration-dissociation rate equations in non-dimensional form are
as follows:

Coupled Species Conservation Equation

d ¥ _ de=u_ JJJ v Jr_]= 1 &l
dt 174z E Jf' r 4r ¢ Q £
i | =l
D.T. | 4. £ J
1 + 1 1 <=1
ey. 7.
Vie %]
- %y
+ 5 (j=c+1 ,...s) 2.116
i=f  +1
J
The species production rate is given as
o, -1
Q.. 1 .l J-q, .8 S 3
=1 =B (cp) LN - ey P ol 2.117
7 e 1T g oI

1

where B, = )”( ~1)‘,(

Y
mn
MM,
-
-
\

2.118

_o
M
¥

or=] -33-




The vibration relation time ‘t} is given by

_ b
-1 rs
TJ (1 e /T)E_ Z z11’10
v, mo T
e J ]
where
*
a, - _
z, = —= FUTC% Ximf)T%
i Mg ©
2
D
. 77’ 1
and a; = - (-8-——-12)6 No
Ti My
0 .
g = —2l
v, =
T
J te
1/3
Aie- Ci/T
Plo. = " 28 .28
1 T
teo
i
and Ci = ~ 173
th

The equilibrium vibration energy e, is given by
je

~ 1
v, v, (6y./T) e
e J -1 j

Conservation of kth Atomic Component

leik[é_ {“ - %“; * fﬁ'a’ j? + 3 éayé =0
i-

(k = 1,2...c)

*barred quantities are dimensional
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Coupled Vibration Energy Equation

de de de de e - e
v, v, : v, v, v, v
log—da=-u i,v i, __de i

dt dz & ase r 386 ‘CJ.

-
cj‘
Q..
1 i
+/°CDJ' D T cj Q Z ?l
1+ | > i j
evj{j i=1j r

(j = c+l...f) 2.127

The coupled species conservation and vibration energy equations are
integrated point by point along the stagnation and body streamlines
using the values of Pi» Py» X} and E}»at an old point, i, to ob-
tain the new values of Xi+1 and £i+1 at the next point, i + 1. Since
in the first the approximation solution integration is only done along
streamlines, the rates are given as total derivatives of streamline
coordinates for spherical bodies. The temperature T is obtained from

the equation of state

T=——S-L 2.128
.Fij
1

The appropriate rate constants for air system are given in Section 2.3.

2.2.3. Boundary Conditions and the Numerical Integration Procedure

Seven simultaneous first order non-linear ordinary dif-
ferential equations must be solved in the first approximation integral
relation solution of the non-equilibrium blunt body problem. These seven
equations which are given as 2.85, 2.106, 2.96, 2.94, 2.95, 2.116, and 2.127
relate the dependent variables £, o , Vor Pos JZ.’ J} and e, to the
independent variable ©. To complete the formulation of this first order
problem one boundary is required for each dependent variable. As in

equilibrium solution, inttial values of every dependent variable except &

-35-




are specified on the axis of symmetry. The final boundary condition is
given by the body sonic velocity location which in turn depends on whether
the prescribed body contour is smooth with continuous slope, or sharp with
discontinuous slope. The sonic velocity point boundary conditions and the
convergence scheme utilized for these conditions are identical to the
equilibrium scheme and will not be repeated here. The calculation
procedure used to determine the stagnation streamline boundary conditions
is considerably more complex than the equilibrium problem and is discussed
in the following paragraphs.

Stagnation Streamline Boundary Conditions

At 8 =0
a = 1r/2
v =20
(e}

Normal Shock Properties

Since the chemical species and vibration energies are assumed
not to change through the shock wave, Xj and ej are initially the same

as their free stream values and P> fol and u., can be determined directly

1
from the perfect gas constant specific heat Rankine-Hugoniot equations
given on pages 29 and 30.

Stagnation Point Properties

In the non-equilibrium solution, the stagnation properties are
obtained by combining the energy and state equations with the integration
of Bernoulli and the chemical and vibration non-equilibrium differential
equations along the axis of symmetry from the shock to the body. To complete
the formulation of the stagnation point property problem, another equation
is required and the fact that velocity along the stagnation streamline is

(2.15) was utilized in this

nearly linear between the shock and the body
study. It is desirable to stop the stagnation streamline integration before
the stagnation point is approached, because all reactions tend equilibrium
in this region and the step size for stable integration is very small, and,
hence, the integration time is very large. It is possible to obtain the
equilibrium stagnation properties without integrating the rate equations

all the way to the stagnation point by noting that pressure only changes

in the four or fifth significant figure in final 10% of the stagnation

(2.4) Thus the all stagnation point equilibrium

streamline integration.
properties are accurately specified by the pressure obtained from the

"incomplete' stagnation streamline integration and the knowledge of the
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stagnation enthalpy. In this program, the stagnation point density and
all the species concentrations which are required as initial conditions
are computed from a free-energy minimization thermochemical equilibrium

(2.6)

computer program.

A few comments should be made about the numerical instability
problems associated with the integration of the chemical kinetic rate
equations. In this program, a variable step fourth order Runge-Kutta
numerical scheme was used to integrate the differential equations. 1In
order to avoid numerical instabilities associated with this explicit
integration scheme, the integration step size was made a fraction of the
distance required to relax a given specie to a zero concentration. The

step size resulting from this criteria is given by

>
d¥/dz

s
15

where D is an input constant. By utilizing this step size criteria

together with a test on the terms in the Runge-Kutta fourth order series
expansion,a stable integration was achieved in the two critical step size
regions; (1) behind the shock where the rates are very large and (2) at
points downstream where some reactions approached equilibrium.

2.2.4. Shock Layer Property Calculation

The first approximation integral relation solution of the
non-equilibrium blunt body provides all the flow properties at the shock
and body but does not specify the shock layer properties. In making the
shock layer calculation, we may utilize the three linearized integral
relation variables, the conservation equations, the equation of state
and the rate equations. There are the seven unknown flow properties,

h, T, X}, ej, P £ and q that must be solved for in terms of the shock
layer spacial coordinates, and if the three integral relation approxima-
tions are included, there are nine independent equations that can be used.
Since there are more independent equations available than there are unknowns,
the problem is overspecified and we are at liberty to select any six
independent equations. The method chosen to determine shock layer
properties was to locate streamlines, determine velocity and density

from two of integral relation approximations, obtain the enthalpy and
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temperature from the state and energy equation, determine the pressure from
the state equation and obtain the species and vibration energies from the
integration of the rate equation along the streamline. 1In the following
paragraphs, the streamline shock layer calculation method will be described.
The streamline calculation is divided into two major parts: (1) streamline
location, and (2) streamline property determination.

(1) Streamline Location

The streamline location within the shock layer was
determined by locating points of constant stream function, ¥ in the
shock layer, which by definition are points on a given streamline. This
calculation was accomplished by utilizing the continuity equation and the
approximation used in the continuity equation method of integral relations

solution. The geometrical quantities used in the derivation, are shown

in Figure 2.
For axisymmetric flow
2
y
1
}”1 quw > 2.129

and from continuity through the shock layer

r-r
2 o
m1=1Ty1 5 Y -21TS“1-27T/ vadr 2.130
r
(o]
Transforming variables from r-r_ tof where {= r-ro/é;(Q) 2.131

f
m, = 27 vyd 2.132
1 of/’f
and

£
9”1 =£[j:vydf 2.133

In the solution of the non-equilibrium flow field, t = PV is assumed
to be linear in f .

Therefore,
t =t +(t; - to){ . 2.134
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From geometry

y =yo+f£sin9. 2.135

Substituting 2.134 and 2.135 into 2.133, we find that

}U

4
. c‘f/[to + (t - to)f] [yo +f£sine]df’ 2.136

and
2

£, ¥, (® 3
9"1 = == q’z L = 62(9) sin6 ftl(g) - to(g)_] "'3i'

+£(8) (yo(e) [tl(e) - to(eg + £(8) tO(Q) sin® {—

Y (@) E@) £ (BF 2.137

To find ¥ = Spl( f,O), for a given a table of 8's, calculate
SPI = jg U y12(91)/2 and solve the cubic equation 2.137 for f at
each 6 and store this information.

For a given streamline it is also necessary to know df/d@ = fl(Q)
and tan e¢ = dn/ds = f2(9). The derivative df/dO is obtained from numerically
differentiating the streamline table results relating)’= )’(9) for 7,/= constant.

To determine dn/ds, we note from geometry that
As = (?o +ff)139
An =A(FE) =fA£'+ +E4f
Therefore

4n £ 4£ £ 4f

tanes = = + 2.138
A; (1+;5) 40 (1+{5) 4 9

The relationship between an incremental change in © and z is obtained from
the relation A4s/ A z = cose” = (1 +f£ ) 40/ 4Z.Solving for 46, we obtain,
40 = (4 Z/@ +-féﬂ) coser. Therefore, at a given 8, and ¥ where we already
know)l' s df/dgjd £/d6, and £, we can evaluate o and 4Z/48.

(2) Streamline Property Determination

The properties in the shock layer have been obtained by

integrating the conservation equations along a given streamline and by
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using two of the linearized variables obtained from the integral relation
solution. The calculation is started just behind the shock at a given 6,

and the initial values of dependent variables are given by

-

o, aTT/2 - (@ + 8) + arc tan ( J:/ Pl tang ) 2.139

1
2 2%

ql = (ul + vl ) 2.113
Pr= P(Ts 8) 2.104
T, =T, (p, Py E4)) 2.128

. =7,
77 Y
e = e

v v

The calculation procedure for determination of the shock layer
properties is as follows:

The equation for the velocity q, 1s obtained from integral relations

] =‘FUV=Slf

and
R ]

and the geometrical relation that

q = u/siner .

When these equations are combined we find that
slf .
[;o + (t1 - to)f7 sine

where ul,fﬁ’and p1 are obtained from the Rankine-Hugoniot relations

q = 2.140

2,113, 2.104 and 2.103,
The density is derived by combining the integral relation
pv o=t + (£ - to)f
and the geometrical relatidn

q = v/coser
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T . -

to obtain

£+ (g - to)f
j’ = q cosor 2.141

The equation used to evaluate the temperature is obtained by

combining the caloric equation of state and the energy equation giving

s f
1 2 o
La-d- Z¥pl’- 2 5, - e,

- j
T = g 1 ctl 2.142
ZE Y.(1.5 +n.)
j j
=1

The species concentration J . and the vibration energies e, are obtained
by integrating the rate equations 2.116 and 2.122 finally, the pressure is

given by the thermal equation of state 2.128.
s
p=pT ZE: X5
1

2.2.5, Continuation of the Non-Equilibrium Program beyond the
Sonic Corner

In the preceding discussion of the non-equilibrium computation
along the body and shock, the integral relations were linearized along body
normals. Since this procedure is not applicable beyind the sonic corner, the
method is limited by the ray through this corner. In order to obtain the
state of the gas and the extent of the shock layer beyond this ray, a re-
quirement for the radiation computation to body points near the corner,
an alternate method was formulated as follows.

All quantities at the corner are determined by Prandtl Meyer
relations. As a result the only unknowns are the shock detachment distance
and shock angle. The geometrical relation connecting these still applies
as before so just one integral relation is needed to provide the second
equation. This is obtained from the continuity equation. It should be

noted in this solution that the linearized functions are

A= yev
and

L=yegu
while in the preceding discussion only puv and pu were assumed linear. This
di fference greatly simplifies the computation and causes little inaccuracy

since y1/y0 does not differ greatly from unity. However, this change in
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assumptions does require one alteration in the determination of the streamline
locations in that ?’is now computed by setting f equal to unity in equation 2.137
This change is required to compensate for an approximately 27 difference in
the standoff distance caused by the different assumptions. The details of
the analysis follow.

In order to deal with a centered coordinate system the integral
relations were assumed to hold over rays in the Mach line direction at the

corner; thus in Figure 2a the angle variable 8 is

T
0 ==+ V/u.
and y =y, + n sin (8 + Gs)
The continuity equation may be written as

M+%—m {1+EL} =0

d S R

where A= yev
L = yeu

Near the corner in the Prandtl-Meyer expansion region R~ (0 and this equation

becomes l

—%’A—6+%—E(nL)-O

With the change of variable g = n/€ , this becomes

A fe'dA 1 )

1
If we assume JA. to be linear in g , 1.e.
A A+ A A

equation 2.143 can be integrated from j =0 to 1 to give

3 & (A +A)-%e—'(A - A)Y+L =0

de 1 o € 1 o 1

or ' ! Jéi _ _

.A-l--.A-o-O-e (A, - A -2 2.144
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A e

and -A. (o] = y0 (e‘OVO + voeo)

1
where (% v e o’ and v(') are given by the Prandtl-Meyer relatioms.

.JL and L

1 p can be computed from the following relations

¥y =Y, + € sin(6 + OS)

2
5+ 1 Yoo

fl '-lf-1+(1-qi)cotzd"

<
L]

q.[ cos & sin (C+ 0 + Os)

—ﬁe-sino' cos (0’+Q+QS)]

1

and

u =q.[ - cos O cos (¢+9+Os)

- —f‘— sin @ sin (0+ 6 + Gs)]
1

where the quantity Qe is non-dimensionalized by amax' Thus equation 2.144
]

yields.A.l. Equation 2.61 'discussion, of the equilibrium flow field solu-

tion) may be written as

M
a0 1
e N 2.145a.
1
where '
]
Ml =.A.1 - elvl sin (8 + Os) €

- e 1[6 v, cos (8 + QS) - ylul]

de,
and N =y, | vige *01V)
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V1=-q. san'sin(a"+9+Os)+

f’q“sin _ dfl ) [

+ 5 i el cosTjcos (o-+ 68 + QS) - U
fi
Finally from geometrical considerations
de _ _ 2.145 b.
16 € cot (0“+9+QS)

The values of € and T can now be computed from

a-i=cri_1+( L) a0

ei=e.i_+( €5a0

by iteration using equations 2.145 and previous values.

2.3 NON-EQUILIBRIUM AIR CHEMISTRY
The species included in the present calculation of non-equilibrium
properties of air are 0, N, e-, 02, NZ’ NO, NO+, 02+, N2+, 0+, and N+.
Continuum theory is used, with the rotational energy of all molecules every-
where equal to the local gas temperature. Vibration relaxation, dissociation,
atom exchange, charge exchange, and ionization rates are included in the
calculation as well as vibration-dissociation coupling. Values for rate con-
stants were obtained from a survey of the literature, with some modification
of the equations used for extrapolation to high temperatures. Simplified
analytic expressions for equilibrium constants were formulated based on
spectroscopic data tabulated by Steiger.(z'lg)
A number of charge transfer reactions were excluded from the set
of reactions finally adopted; those having a relatively large energy defect
are thought to have quite low cross-sections. Electron impact excitation
and ionization was to be included originally, but subsequent study revealed
that there is too little information on elastic and inelastic energy transfer
rates between electrons and molecules, Only associative ionization is included.
Electron attachment is insignificant at the high temperatures found in the

Cagse 111 flow field.

bty
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The reactions used and the corresponding forward rates and equilibrium

constants are listed in Table 1. The methods used to obtain the numerical
factors are discussed briefly below.

2.3.1. Equilibrium Constants

(1) Equilibrium Vibrational Energy

Spectroscopic data for the atoms and molecules considered here

(2.19)

have been tabulated recently by Steiger. The vibration and vibration-

rotation coupling constants for NZ’ 02, and NO were used to compute equilibrium

vibrational energies according to statistical mechanics (see for example

(2.20)).

Mayer and Mayer It should be noted that Steiger's formulation in-

cludes vibration-rotation interactions correctly in computiﬁg partition func~
tions, but incorrectly in computing vibrational energy. The expression used

in these calculations is(?+2%

u

o =R¥[ u +£2"+ GJiX +2x)]=R¥[__“__+_°] 2.146

v, u u u u
je e -1 e -1

where u, = @ /T, with 6, values of 2335, 3541, and 2786°K for 0 and

. 22 Ny
J J

NO, respectively. These values, given recently by Konowalow and Hirschfelder,

are somewhat larger than those given by Herzberg.(z'zz)

Values of u_ are
given in Table II.

The ground electronic state properties of each molecule were used
in computing vibrational energies, since the constants of low excited states
differ little from the ground state. The values used are given in Table 1I.

(2) Equilibrium Constants of Chemical Reactions

For convenience, the species considered here are divided into
a group of 3 independent elements, 0, N, and e-, and a group of 8 dependent

species, 02, Nz, NO, NO+, 02+, N + 0+, and N+. Although a large number of

2 ’
reaction paths are considered, the equilibrium state is completely specified

by a total of only 8 independent equilibrium constants. Equilibrium constants

(2.21)

for 8 reactions were selected as being independent and the remaining equilibrium

constants were calculated by linear combinations of these 8, providing complete

consistency in the calculations. It should be noted that Wray(2°23) over-

specified the equilibrium state by utilizing redundant equilibrium constants,

and K are inconsistent

(5)* X6y 7)

i.e., the approximations used for his K

with his K(Z)’ K(3), and K(4).
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Using Steiger's tabulation of spectroscopic data, hand calcula-
tions of equilibrium constants were made for temperatures up to 32,000°K
and were fitted by polynomials. Only those excited states which made an
appreciable contribution to the partition function were included and, as
mentioned above, vibration and rotation constants for all molecular electronic
states were assumed the same as ground state values. The first two excited
electronic states of 02 were included, as well as the first of O, none of N2,
the first two of N, the first of NO, the first of N', and the first two of O'.
Polynomial expressions for the three associative ionization reactions were
already available from Lin(z'za) for temperatures 3000°K < T « 3O,OOOOK.
These were used in a slightly simpler form. The results, given in Table I,
are accurate within 107 over the temperature range 8000°K < T < 32,000°K.

2.3.2. Vibration Relaxation Rates

Because of the good agreement at high temperatures obtained by

(2.25)

Wray between experimental vibration relaxation times in nitric oxide

(2.26,2.27)

and the Schwartz, Slawsky, and Herzfeld theory, the SSH theory

was used here for vibration relaxation of all 3 molecules, O and NO

2> Moo
at high temperatures. Although the theory can be used to provide absolute
relaxation rates, they have been normalized by experimental data at the
highest temperature available. The required reduction in the results of
SSH theory in order to match experiment is a factor of 2 for oxygen and &
for nitrogen.

The expression for the vibration transition probability given by

Schwartz and Herzfeld(2'27) is

r
_0.716 =< 2 }_3[ (_*_ZAZ__ 1__’20)(%exp(-3)() 2.147

(1+T)

[2n w2/ (ax)nler | 3

18.0/r  for 10,000°K ¢ T ¢ 30,000°K

where

3
*
"

O

T - 1/3
rz) [1/2 (1 +X ) + 1/2]

21

= He)

1+

_ . 2
V1-0— <><A1 h/8rnlvl

and these parameters are defined in refs. 2.26 and 2.27.
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At high temperatures P1 -0 = PO -1’ the ratio being exp (h ¥/kT)

The final expressions used, based on eq. 2:147 and available
data (2.25,2.28,2.29)
. are

4 — - 0.28 _1/3
oxygen Plo =1.7x10" T exp (-206/T )
. 4 = " 0.28 _1/3
nitrogen =8.0x 10 T exp (-273/T )
o ' , _ - 0.28 _1/3
nitric oxide =4,5x 10" T exp (-230/T )
These tramsition probabilities are used in the classical uncoupled vibration
relaxation rate expressions(2'37)
de e, - &
V. ; : - T
1l = 1e 1 - - ’
m 'C‘J (ev. ev.) ZP0 -] (1L -e 7)) 2.148
je J

where Gﬂgeis the equilibrium vibrational energy at the local temperature, 6,
. v
is the fundamental vibrational oscillation energy in OK, and Z is the collision

frequency given by

Vv,V )
2 = 2 12D2(2W'(T/2
P12

)
r, 12

where )1 and )2 are the number densities of moleculesof type 1 and 2, is the

D
_ ' 12
average of the molecule d1ameters,,U~12 is the reduced mass of the molecule pair and

k is the Boltzmann constant.

2.3.3. Chemical Reaction Rates

The forward rate constants used were compiled from several sources,
with a few modifications to insure physically reasonable extrapolations to
high temperature. The oxygen atom three-body recombination rate coefficients

were taken directly from Lin.(2'24) However, an average value of 1.0 x 10-32

L
T * cm3/partic1e was used for the inert catalysts N2’ N, and NO.
For nitrogen recombination the rate constants summarized by Lin(2'24)

were used in the temperature range for which dissociation rates were measured.
1f this form of the recombination rate is used at higher temperatures, the
dissociation rate constant reaches unreasonably large values. This arises
because of the T-% temperature dependence for the pre-exponential factor of
the equilibrium constant of this reaction. To provide proper extrapolation of
the dissociation rate constants the inverse temperature dependence of the
recombination rate constants was increased by one power of T and matched to
Lin's rates at 9000°K.

The rate constant for recombination to form nitric oxide with NO

as catalyst was taken directly from Wray and Teare.(2'30) The value of the
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rate constant for other catalysts was assumed to be the same as that for

argon, measured at an average temperature of 4000°K by Freedman and Daiber.(2'31)

The temperature dependence determined by Wray and Teare was used to extrapolate
to higher temperatures. The rate used here fits Freedman and Daiber's results
at AOOOOK, and is 4 times larger than Wray and Teare's results.(2'30)

All of the atom and charge transfer reaction rate constants were

(2.24) As mentioned earlier a number of charge transfer

taken directly from Lin,
reactions were excluded owing to large energy defects. Theoretical analysis,
in agreement with experiments, shows that the cross-sections are very small
for charge transfer involving atoms and monatomic ions if the energy defect

(2.32) There is no experimental evidence to the

exceeds a small fraction_of kT.
contrary for charge transfer involving molecules and molecular ions. Therefore
only charge transfer reactions having an energy defect less than 1 ev were
retained, after examining all processes, including those involving low excited
states.

The only ionization processes included were the associative ionization

(2.24

reactions. Lin's rate constants ) were used, but were extrapolated to high
temperatures in a different manner. Lin extrapolates using the dissociative
recombination rate constant. However, because the pre-exponential factors in

the equilibrium constants increase rapidly with increasing temperature, the
associative ionization rate constants obtained by Lin also increase with tem-
perature, leading to unreasonably large cross-sections. It is thought preferable
to extrapolate using the associative ionization rates determined in the tem-

L
? pre-exponential temperature dependence.

perature range 4000-5000°K, using a T
Although electron impact excitation and ionization processes are
probably significant for these conditions, insufficient information is currently
available to warrant their inclusion. It is known that multiple excitation is
the dominant electron impact ionization process for monatomic gases(2°35)
and is expected to dominate in diatomic gases. Calculations of the necessary
cross-sections are currently being carried out at Philco Research Laboratories,
but are not yet complete. In addition, because there is insufficient informa-
tion on the rate of transfer of energy from molecular species to free electrons,
it is not possible to determine the electron temperature accurately. Further
t heoretical and experimental work on excitation rates in diatomic gases is

needed to complete the set of chemical reaction rate constants.
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2.3.4, Vibration-Dissociation Coupling

The coupling between vibration relaxation processes and dissociation

processes, known for some time, has recently been treated theoretlcally(2 -34,2.35)

and observed experimentally in argon oxygen mixtures at temperatures up to

18,000°K.(2'28’2'36)

than the earlier theoretical treatments, although essentially the same in
(2.35)

The coupling model used here is considerably simpler
fundamentals. As was done by Treanor and Marrone the vibrational energy
lost through the dissociation process is included in the vibrational relaxation
rate equation. However in the present model it is assumed that the probability
of dissociation is large only for high vibrational levels as opposed to ether
treatments which assumé that "dissociation occurs with equal probability from
any vibrational level in any collision that has sufficient translational

energy to effect the dissociation".(2'35)

The above assumption is based on the knowledge that the probability of
a collisional transition to an adjacent quantum level is much greater than that

(2.37) Similarly the cross-

for a change of two or more vibfational quanta.
section for dissociation from a very high vibrational level is considerably
larger than that from a low level because weak (distant interaction) forces
are sufficient to effect the energy exchange required for dissociation of the
high level.

With this model, all molecules dissociated must climb through the
vibration ladder, the energy being fed to dissociation, through vibration
relaxation, from the translational energy of the gas. Thus the vibrational
coupling limits the rate of dissociation to a value which can be supplied

energy-wise by vibration relaxation. This limitation is expressed as
E d[xz] X 2.14
[2]dt - 149

where E is the dissociation energy of molecule X2 and dev/dt is the rate of
production of vibrational energy per molecule. The limitation in dissociation
relaxation time given by equation 2.149 can be combined with the uncoupled
dissociation rate (d[;xz] /dt)u, to determine the dissociation rate over the

full range of conditions,

-1 -1

d [x = d X

fgti- - E G, + ( Etg]—)u J 2.150
%) =

At low temperatures the uncoupled rate is very small, the second term on the

right of equation 2:150 dominates, and equation 2.150 correctly gives the

*The units of the bracketed quantities are particles per original particle of air.
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uncoupled rate. At high temperatures equation 2.150 reduces to equation 2.149
without the inequality.

The vibrational relaxation rate equation, including the energy

lost by dissociation, is given by Treanor and Marrone (?+3%) as
de e - e - -
Vi Ve Y5 E(T,,T) | d [xz'l) . G(T,) (d fxﬂ )
2] (%]

e

v, d [X )
L | 25

d [xz]
X2 dt )

+ - ( 2.151
where the subscripts f and r refer to the dissociative and the recombination

process respectively, T, and Tv are the translation and vibrational temperatures

respectively. The assuiption that dissociation occurs primarily from upper
vibrational levels also implies that the enexgies E and G are the same and are
close to the dissociation energy. In the region of the flow for which vibra-
tion-dissociation coupling is significant the values of @ are small compared
with the dissociation energies. For this reason the last two terms of eq. 2.151
were not included in the expression used to obtain computer results. The

error introduced into eq. 2.151 by this omission is less than 307 in the

coupled dissociation rate, considerably less than other uncertainties

(factor of 3 or more) in these rate coefficients.
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2.4 RADIATION PROPERTIES

A computer program has bce:. written uide. tois study oo coupulc
tie radiatio. from aiga temperature air both at equilibrium and non-equilibrium
conditions. The former is typical of that required for the lower altitude
computations while the latter applies to the high altitude, Case III deter-
mination. The particular electronic transitions considered in this computer
program were dictated by the limits imposed by the two cases under consideration.
In the equilibrium case the temperatures are of the order of 12,000°K, through-

(2.38) et.al. have indi-

out the gas cap. Several authors such as Meyerott,
cated at these conditions the radiation from high temperature air is essentially
all continuum. This contiuum results primarily from electron-ion free-bound
transitions, but also one must consider electron-neutral and electrorn-ion
free-free transitions as well as the capture of electrons by oxygen atoms.

In the higher altitude case the gas is considered frozen chemically going
through the shock and only the translational and rotational degrees of freedom
allowed to equilibrate. As a result the temperatures behind the shock are

very large, of the order of 65,000°K, and there exists molecular species,

As the flow continues in the shock layer the vibrational and electronic degrees
of freedom are excited and the molecular species are dissociated. Thus in

the non-equilibrium radiation it is important that molecular band radiation

is also considered.

The radiation computer program developed under this study allows
one to compute the radiation from high teuperature air by all of tnese pro-
cesses. A preliminary examination of the Project Fire flight couditions
indicated that the densities are sufficiently low that the radiating air will
be optically thin. An exception to this assumption is apparent in the final
analyses as discussed in the next section. Consequently, the individual
absorption coefficients can be summed and the emission computed from this.
The point radiation so computed is then integrated over space to determine

the local flux, either spectral or total, to a given body location.

For the non-equilibrium case the radiation is computed from
the equilibrium program using the non-equilibrium specie concentrations and
a modification to account for the non-equilibrium concentration of excited

electronic states required in the band radiation determination.
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Following is a detailed discussion of the theoretical equations
used in this computer program, as well as a discussion of the various input
parameters that are involved. In each case the best values which are given

in the literature have been used in this computer program.

2.4.1. 3and Radiation

Over the past several years the radiation from air, N2 and st 02
has been the subject of numerous theoretical and experimental studies. The
results of these studies have indicated that the important band transitions
that should be considered are the following: the O2 Scwmann-Runge, the
NO(Y¥), the NO (P), the N2(1+), the N2(2+), and the N;(l-), The research
done on these band systems has yielded electronic transition moments and/or
f-numbers for these bands which radiate strongly i). (he temperature range
of 4,000 and 9,000°K. Keck, Allen and Taylor(2'39) have recently summarized
the results of these experimental programs and reduced the data in terms
of electronic transition moments. This compilation of data is believed to
be the best available and was used in the computation for the values reported
herein. 3ince the Fra.k-Condon factors and spectrographic data used in this
study were the same as those used by Keck, Allen and Taylor and the methods
of computing the r-centroid values for the molecules were similar, reference

will only be made to the previously mentioned paper.

The spectral absorption coefficients in electronic band systems
of diatomic emitters have been computed in the past by models that may be
described as the just overlapping line model or a model utilizing a smeared
out rotational structure. Both of these models are discussed by Patch,

(2.40)

Shackleford and Penner and are shown to yield the same equations for

the determination of the true spectral absorption coefficient. This equation

is given as follows for a given electronic transition and for a single

v', v" transition:

) ]

Jhe 3 (e, *€;)
‘3 V' v =Trr £ ' " " l’N(B' B" € kT ** g r.n e- kT
> °c v Qv Qr e e) vV
2.152
(2.39) . .
Keck et.al. shows that the f-number for such a transition is related

to the electronic transition moment by the following expression which is

given as a function of the r-centroid.
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L ]

3 = ‘ q,1yn 2.153
o

Introducing these quantities into Eqn. 2.152 and noting that the lower state

v'" may not be the ground state and thus is related to the ground state

through the Maxwell-Boltzmann distribution, the following equation is obtained

/,,:ﬁ}'a; K - 2,156

h 1"
where T - ’ " -€ /kT
Y - o R(r) N & (25" + 1) e Ayt yn
3 &D € 3 § 2s+ 1 QV Qr B' - B”
e e
"
E
S * lk:;
e Ve
'
- —he I 5 ~ e Be ~
T T [ et (Bm B g W

(See Figure 3 for a definition of various wave numbers).

In the present work this absorption coefficient was averaged over a 2,000

wave number interval and determined by the following formula
L+ & _ - (1+K(30+KAG$)e'K4m

/u =/l:) Kl = =5 2.155
(o]

Finally, the total absorption for the given band over the averaged wave

number was given as the sum of the individual v'v" transitions

2.4,2., Continuum Radiation

The continuum radiation mechanisms that are considered in this
report are the electron neutral and the electron-ion free-free transitions,
the radiation from the capture from the electrons by oxygen atoms, and the
electron-ion free-bound (deionization) transitions. The first two of

these mechanisms are particularly important at temperatures of less than

9,0000K.for equilibrium air while the last as pointed out by Meyerott et.al.(2°38)

become predominant at temperatures greater than 10,000 to 12,000°K.

-53-




As in the band systems computations, an absorption coefficient
was computed for each of the radiation mechanisms described above. The

contribution from 0  was obtained from the following formula.

Mno= a'[o']
where O , the total detachment cross section, was obtained from the
(2.41)

(2.4

measurements of Branscomb et.al. at low energies and the calculated

2) at higher energies as reported by
(2.43)

cross section of zates and Massey
Armstrong, Sokoloff, Nicholls, Holland and Meyerott. The ion and
neutral free-free transitions were computed using Kramer's formula (Ecn. 2.156)
and, in the case of the neutral free-free, the effective charges for the

atoms reported by Keck, et.al.(2'39)

[N

)
_ 8T e - - 2 . ]
/b— Tn— —————'—'m c4ha3 (21 nmkT) (e ] 2 [hi 2.156

Again noting that the air is optically thin at all wave numbers, the total

absorption coefficient is obtained by summation.

The continuum radiation from electron-ion free-bound transitions

vas determined by interpolation and extrapolation of the results presented

2,44 . . . : .
1.( ) For this determination the hydrogenic cross-sections

(2.43)

by Breene, et.a
for recombination as computed by Bates et.al. were used to determine
the ionization cross-sections (i.e., absorption cross-section) from the

following

x 0

Where Ek is an energy term dependent on the frequency of the absorption
edge for the lower electronic level considered. The computed spectral

and total radiation is reported at 10,000 and 25,OOOOK. It was found

that this radiation could be scaled by the ratio of the product of the
number densities of the species of importance over the wave number range

of interest. Since the temperature range of interest was near the 10,000°K
level in the equilibrium solution, this temperature was used as a base

and the intensity computed from the following:
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and

+ -
[6 AI [ﬁ J
»523 x 1033

where the constants are the products of the equilibrium concentrations at

10,000°K respectively. The above method was used to simplify the computer

program with little inaccuracy.

The invariance of the free-bound radiation with temperature can

be shown analytically. Breene(2'44) computes the radiation as follows
__h c &l
13 =9, [n] era-e kT )

If we define the equilibrium constant as

_[NN,Jr] [Ne-l 3/2 -2 [ne &+ E*}

K = ~ T e kT
eq [er

*
where h ¢ ait is the energy of the electronic transition and E is the energy
of the absorbing state above the ground state, and we introduce the partition

function of the absorbing state as

then
he & hc W

Ia T, [NN+] [Ne'] ¢ - ot

It is apparent from the computations of Breene that the radiation from a
particular radiating state decreases rapidly with wave length; thus

he @&
t hc @

P d
kT ~ kT

Finally it is apparent that the radiation from free-bound transitions can be
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given by

which is invariant with temperature. Although this result is only approximate
for the exact spectral distribution (errors of the order of a factor of 2

were noted at specific wave numbers, the total radiation resultin. 1is essentially
exact with the computation of Breeme in the temperature range o: 10,000°K to

30,000°K.

2.4.3. Radiative Flux Computations

If we consider only the equilibrium radiation from gases which
are optically thin at all wave lengths, one can write the radiation per unit

volume as the following

dI L d B
AV dR 4 M TV af 4@

where

d:
d v dRA d&

h ¢ & -1
2h el (; - - )

k T
is the blackbody intensity and

) __hecd

M= fp (L-e kT
is the apparent absorption coefficient in terms of the true absorption
coefficient. The absorption coefficient computed using the previously
mentioned absorption models yields the true absorption coefficient. Finally
the total absorption coefficient for all bands and continuum mechanisms (except
deionization) at a given wave number, i.e., over a wave number interval, were
obtained by summing the individual contributions, and the flux determined
from equations. The flux per unit volume is then the sum of the above and

the deionization determinations.

The values of the radiation per unit volume so computed for various
points in the shock layer were then numerically integrated over space to

determine the spectral and total flux to a given body location. The radiation
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to a given point is given by

el
dg = 1 <%= d v 2.157
r

where I is the volume emission
© is the angle between the body normal and the line between the
radiating volume d V and the body location

and r is the distance along the latter line.

If one considers the spherical coordinate system with its center at the
center of curvature of the body face as shown in Figure 4, Eqn. 2,157 can

be written as (I is not a function of P because of axisymmetry)

2 2
dg = R? sin © I (8,R) (R_-Rp -a) + b cgjgp dedRrRdp 2.157a
2 Ro a+ b cos ]

2
RO

]

where a + R2 - 2 R R, cos@cos 6,

o
[}

- ZR Ro sin 8 sin 6,

The appropriate limits of ’ , R, and 8 are as follows:

€=0 to e

max
R - R cos 8 cos 90

where, if R cos (8 + 90 ) £ Ro, Fmax = arc cos [ T o= Cy

if R cos (®© +-9°) 2 Rb’ p max -

R = Ro to RS

@
[}

0 to ©
max

R
where © = arc cos (—5L) + 8
max Rs

Equation 2.157a is numerically integrated using Simpson's rule. It should

[}

be noted that at € = 8 , R = Ro’ and 8= 0, the integrand of equation 2.157a
o

becomes infinite, but the radiating volume goes to zero QB:iBnmx = 0). Care

must be taken when numerically integrating in the region of this singularity

to avoid numerical errors. To obviate this problem, integracion along the
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ray through this particular body point was not used, but rather the body
point was chosen to be mid-way between mesh rays. Further the effect of
this numerical problem was investigated by varying the proximity of the
ray closest to the singularity and noting the effect on the integration
for a constant value of I. Since the q for this problem should be con-
stant over the body, any variation was necessarily caused by the singu-
larity. It was found that as the body point moves away from a mesh ray
the computed value of q at the mid-point between the mesh rays had
decreased to within 5% of the analytic value for this simple case; thus

the accuracy of this method is assumed to be of this order.

2.4.4, Lon-equilibrium Radiation

Some years ago it was noted in observations of the variation of
electron density and of band radiation behind normal shocks in air that the
relaxation time to overshoot is roughly the same for both. The time to
decay to equilibrium is also very nearly the same. These early observations
are borne out well by the more recent and more careful studies of the ioni-

zation rise distance behind normal shocks in air by Lin(2'46) and of band

(2.47) Noting Lin's definitions

radiation rise distance by Allen, Rose, and Camm.
ot "ionization rise distance' and "ionization incubation distance' and
examining his detailed electron density profiles, a good approximation for
the "distance to reach peak ionization'" is to add the incu.ation distance
to the rise distance. The resulting distance, when transferred to a time
in the laboratory frame of reference and compared with Allen's band radi-
ation 'time to peak', is in remarkably close correspondence. Over the
velocity range 4.5 < ug < 7 km/sec where the two sets of data overlap

the radiation time to peak agrees with the ionization time to peak within

30%, or better than the scatter of either set of data.

This remarkable coincidence in relaxation times strongly suggests
a close coupling between electron production and excited state production
processes. As noted earlier, the mechanism and rate of production of ex-
cited states of diatomic molecules has not yet been determined either theoreti-
cally or analytically. However, empirical relations to determine the popu-
lation of excited molecular electronic states can be extracted from the
above experimental data. Although the data is insufficient to lead to a
unique empirical model, the following quite simple approach has been adopted

on the basis of our studies of collisional excitation rates.
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At any point in the non-equilibrium flow field the density of
excited molecular states is computed from the already determined ground state
density assuming the ratio to be in equilibrium at the local translational
temperature. This excited state number density is reduced by the ratio of
the local electron density to the equilibrium value at the stagnation point.

This number density is used in computing band emission and absorption coeffi-
cients.

This model correctly predicts the overshoot in N2(1+) band
emission by two orders of magnitude measured by Allen, Rose and Camm.(2'47)
It does not introduce the unrealistically large band emission immediately
behind the shock front predicted by a model based on equilibrium excited
state densities with respect to local ground state densities at the local
temperature. The model is quite similar, in its results for normal shocks,
to that given by Allen, Rose and Camm.(2’47) However, it has the advantage
that it can be extended simply to any flow geometry resulting in significant
changes in time scale from that of one dimensional flow through a normal
shock. Note, however, that this model has been formulated for the region

of approach to equilibrium following a strong shock and should not be ex-
tended to the computation of band radiation in an accelerating, rapidly

cooling, flow region.

The model adopted here is open to guestion on two counts; (1) The
use of the local translational temperature in determining the derrsity of
excited states, and (2) the use of a linear dependence on electron density
to reduce these densities. The former is justified to some extent Ey the
success of the same assumption in the model adopted by Allen, et.al.(2'47)
The latter is partially justified on the basis of the similarity in shape
of the electron density profiles and the radiation profiles prior to reaching

a peak.
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2.5 CONVECTIVE HEAT TRANSFER COMPUTATIONS

Although the percentage of particles ionized is small for Project
FIRE re-entry velocities, the amount of energy invested in ionization is
significant (~15% by a crude estimate). Also, the presence of mobile
electrons with their attendant high thermal conductivity raises the ques-
tion of the effect of electron-borne heat transfer on the overall heat
transfer, For these reasons, attention should be given to evaluation of
the expected accuracy and validity of the correlation formulas used to
calculate convective heat transfer.

The correlation formulas used to evaluate stagnation region heat

transfer are those of Hoshizaki(zAB%nd Fay and Riddell.(z'Aghoshizaki

numerically solved the stagnation point boundary layer equations for air
in thermodynamic equilibrium. He used the thermodynamic and transport

(Zjohnd found that the heat transfer could

properties calculated by Hansen,
be correlated with + 6% by use of a single formula. This uniform dependence i 1
of heat transfer on enthalpy level throughout the ionization regime is at-
tributed by Hoshizaki to a cancelling of effects of decreasing viscosity-density ‘
ratio and increasing wall enthalpy gradient.
Fay and Riddell'scha%binary mixture boundary layer analysis includes
only the dissociation process and is therefore not expected to be applicable
in the ionization regime (velocities above 30,000 ft. per sec). However
Hoshizaki found that simple extrapolation of Fay and Riddell's formula,
neglecting any effect of dissociation or iomization on viscosity, gave a
result that agreed reasonably well with his results. Specifically, at a
velocity of 37,500 ft per sec, the Fay and Riddell result thus extrapolated
(with a Sutherland viscosity formula) gives a heat transfer parameter about
10% lower than Hoshizaki's for a highly cooled wall.
Now we have to ask what effect factors not included in these theories

might have in order to assess the overall expected accuracy of the heat transfer
calculations. Also, we should compare these formulas with the available experi-
mental results. We can consider Hoshizaki's formula as the norm or basis in

-60-




T O e

T —— | b L& . e

our discussion since the agreement with it of Fay and Riddell's formula in
the ionization range is little more than coincidental.

The first things that come to mind are the effects of different
estimates of the transport properties and the effects of non-equilibrium re-
action processes. The effect of different transport properties can be evaluated
by comparing the results obtained by Pallone and Van TassellCLSDusing both
Hansen's(ZSQCransport properties and those of YosSZ'SZ)In the velocity range
of 37,500 fps, the two calculations differ by only about 8% (Hansen's properties
giving the higher values), although considérably greater differences occur at
higher velocities. The big factor here seems to be the equilibrium thermal con-
ductivity which Hansen calculates to be considerably above that'given by Yos
for temperatures above 10,0000K.

We should note that greater differences than this 8% figure exist
among the various calculations which use the same transport properties. Thus,
Pallone and Van Tassell's calculation for equilibrium air, which also used
Hansen's transport properties, gives a heat transfer parameter about 25%
higher than Hoshizaki's (at 37,500 fps); Cohen'scLs”calculation using the
same properties gives a result about 107% above Hoshizaki's.

We also note, somewhat parenthetically, that Fay and Kemp'sexyoevalua-
tion of equilibrium heat transfer in nitrogen (which will be discussed more
below) agrees almost exactly with Pallone and Van Tassell's result (the one
using the transport properties of Yos) at this velocity (and lies about 15%
above Hoshizaki's result). Fay and Kemp argue, justifiably, that the differences
between nitrogen and air should be small in this velocity range (and this is
borne out by Pallone's calculations). On the other hand, the largely discounted(z‘asz'Sw
calculation of Scala(ZJE&or equilibrium nitrogen gives results a factor of two
higher than the other calculations.

Considering all these results, then, before looking at the experimental
data, we estimate that Hoshizaki's formula for equilibrium air agrees with the
best estimates of other investigators within about 15% (if we accept Yos' transport
property calculations as preferable to Hansen's). Most likely, Hoshizaki's
formula underestimates the equilibrium heat transfer by an amount of this
magni tude,

But what about possible non-equilibrium effects? The only applicable
non-equilibrium boundary layer solution is that of Fay and Kemﬁg'sgkho con-
sidered nitrogen in stagnation regions with frozen and equilibrium boundary

layers. They found that the frozen boundary layer heat transfer exceeded the
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equilibrium value for velocities above about 35,000 fps. The difference

between frozen and equilibrium appears to be approximately 4% at the 37,500

fps. velocity level, although the difference increases markedly for higher
velocities. The reason for this difference is the appearance of a layer of
atoms in the equilibrium, recombining boundary layer. Because of the relatively
large charge-exchange cross section between nitrogen atoms and ions, this layer
of atoms inhibits or prevents diffusion of ions toward the wall. Since the ions
and electrons are coupled by Coulomb forces, electron diffusion is also
inhibited. As a matter of fact, electron diffusion through atoms is

eliminated in the Fay-Kemp model because they let the ion-atom cross section

be infinite, i.e., no relative diffusion of ions, atoms and electrons occurs

in their model. On the other hand, since no recombination occurs in the frozen
boundary layer, there is a continuous diffusion of atoms, ions and electrons

to the wall, Hence the greater heat transfer for a frozen boundary layer.
Actually, the differences between frozen and equilibrium heat transfer would

be somewhat less than given by Fay and Kemp since the charge exchange cross
section is not infinite, but is (presumably) about an order of magnitude

greater than the neutral-neutral cross sections.

Thus, although non-equilibrium effects are of considerable importance
in ionized boundary layers, the magnitude of the difference between equilibrium
and frozen layers is still small for Project FIRE conditions (too small, in fact,
to be measured in the experiments). ‘

Note should be taken of the fact that Fay and Kemp (and, of course, all
the other investigators) have given no consideration to intermediate-rate or
partial equilibrium processes, the presence of molecular ions, vibrational
non-equilibrium, unequal electron and heavy particle temperatures and non-
equilibrium conditions outside the boundary layer. While it is difficult to
generalize or even predict the direction of change caused by all these effects,
the general effect of non-equal electron and heavy particle temperatures is
qualitatively clear.

(2.56),

As pointed out by Chung and Mullen, he pertinent parameter to
characterize temperature equilibration is the ratio of the thermal conduction

time (in the electron gas) to the electron-heavy particle temperature equilibration
time, Because of the high thermal conductivity (or low Prandtl number) of the
electron gas, unless elastic energy exchange between the electrons and heavy
particles occurs quickly (high pressures) this ratio will remain small for a

wide range of flight conditions. Thus, the thermal boundary layer in the electron
gas will be thick compared with the neutral thermal boundary layer, i.e., the
effects of the cool electrons near the wall will be felt far from the wall.
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This lower electron temperature will make itself felt in a corresponding
decreased thermal conductivity and an increased tendency toward electron-ion
recombination. (Also, of course, a depressed electron temperature may affect
t he rates of other reactions significantly.) Both of these tendencies are in the
direction of lower heat transfer than that predicted by the one-temperature
t heories.

Now for a look at the available experimental results. Rose and
Stankevics@-57) nave presented a summary plot of all available data, along with
the abovementioned theories. In the velocity range of interest, the mean of
the experimental data lie about 20% below the mean of the theories (and about
5% below Hoshizaki's theory). The scatter in the data is on the order of + 25%
so definitive conclusions are hard to draw. Also, all of the data are from shock
tubes which have the inherent undesirable feature of heating the gas in a two-
step process (through the incident shock and then through the model bow shock).

Notice that the direction of the deviation of the experimental results
from the theoretical is in the direction indicated by our discussion of unequal
electron-heavy particle temperature effects. Clearly, more analysis and better
data are required. However, the results that do exist tend to establish the
overall validity of the theoretical heat transfer formulae (except for Scala and
Warren's(z'ss)). Hoshizaki's correlation seems to agree best with the experimental
data, although for no apparent good reason. Thus, in using his formula, we
are hitting some sort of mean, i.e., we are perhaps 15% low compared with other
theories, about 5% high compared with the mean of the experiments. Overall we can
probably say that stagnation point convective heat transfer should be correctly
estimated within + 20% in the velocity range around 37,500 fps at altitudes where
low Reynolds number effects are unimportant.

All aerodynamic heating calculations were performed by means of the
Aeronutronic Blunt Body Heating Computer program which contains the stagnation

1(2'49) and Hoshizaki(z'aa). Hoshizaki's

point methods of both Fay and Riddel
solution was applied to both of the specified Project Fire cases since it has

been shown above to be applicable in this flight regime. The heating distribution
over the blunt face is determined by a stepwise solution of Lee's integral equa-
tion (2.60) for laminar flow and by the method of Rose, Probstein, and Adams(z'él)
for turbulent flow. Transition to turbulent flow is based on a pre-selected
momentum-thickness Reynolds number which is calculated by the method outlined in
reference 2.62, The calculated results indicated that turbulent flow will not
occur on the blunt face of the Project Fire re-entry vehicle at either of the

flight conditions considered.
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It is anticipated that separation will occur at the corner and the entire
vehicle afterbody will be immersed in a separated flow field. However, after-
body heating distributions were calculated (Case I) for attached laminar flow.

The attached flow calculations were an extension of the blunt face distribution

using Lees' laminar solution.

2.6 SUPERSONIC FLOW FIELD

The solution for Case 1 involves the determination of the heat flux
over the entire body requiring that the flow properties downstream of the body
corner, that is, the supersonic portion of the flow be computed by the method
of characteristics. Since the expansion at the corner is very rapid it was
assumed that the chemistry became frozen along a ray normal to the body at the
corner, but variations in composition and the resultant frozen heat capacity ratio
along this line were considered in the frozen characteristic solution.

As discussed previously the flow properties within the gas cap as determined
by the integral relations methods were not accurate enough to serve as the input
to the characteristic solution for the afterbody flow. Instead the initial flow
properties along a ray completely in the supersonic field were determined using
the normal pressure gradients at the shock and the body. The distribution of
flow properties along the normal at a body angle of 0.37 was first found. This
was done by fitting a cubic equation for the pressure distribution using the
computed pressures and the normal pressure gradients at the shock and the body

as shown in equation 2.158.

;=a§3+b§2+c§+d 2.158
=—' —'- Y - D
where a = p_ + Py 2(ps pB)
— —_— -_l_—'
b =3(pg - pp) - (pg - 2pp)
c =.Bé
- _ =2
d = p, andp’a-ﬁ%—
R

In addition it was assumed (e v) varied linearly along the normal to the body.
Coupling this with the energy equation and the equation of state (i.e., equation
2.46 and 2.160), the pressure, velocity and density distributions along the normal

were determined.

¢? +h=1 2.159
i;f A
P=@m 2.160

In order to find the location of a body point at which the velocity was slightly
supersonic a Prandtl-Meyer expansion was taken around the corner to a Mach of 1.25.
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The new input line, which was completely in a supersonic region, was then
chosen as the straight line connecting this body point and the shock point at a
body angle of 0.37 radians. The flow property distributions along this new input
line were then computed by a constant ¥ stream tube expansion from the original
data on the 0.37 normal. By this method all flow conditions were prescribed at
intervals between the body contour and the shock along a ray that was entirely
supersonic. At each data point on this line the equilibrium concentrations were
determined and from them a value of the heat capacity ratio, J.

Using such input line a simple characteristics program was developed
to compute the properties for a frozen expansion over the afterbody taking into
account a variation in § along the input line. The flow equations are referred
to Cartesian coordinates in x and y with x along the axis of symmetry and y normal
to the axis. The origin is taken at the nose of the body. The flow variables
and the values of § are given at points S, 1,2,3, --- through B along a ray which
is completely supersonic.

The method of characteristics enables one to find flow conditions on
a new data line, further in the supersonic region, by determining conditions at
intersections of characteristics through interior points 1,2,3,..... and at a
new shock point and new body point. First, consider Figure 5 which shows two
interior points 1,2 on the initial line. The conditions at the point of inter-
section 3 of the - characteristic through 2, the + characteristic through 1 are
determined using relations along the streamline segment 3,4, The equations of

the characteristics are
d —
=L = tan (o +/.b) 2.161

where 0 is the angle between the velocity vector and the x-axis and /L is the
Mach angle.
To determine the position of point 3 eq. 2.161 is solved as simple

difference relations:

{tan o, - /Ll)} (x5 = %)

{tan (92 -/u.z)} (x3 - x2) 2.162

Next the pressure and flow direction are calculated at point 3. The compatibility

<
w
1
<
Pt
I

equations are

SOt 4p T ag 4+ —SinASING 4 g 2.163
f4 ycos (0 +/;)

Equation 2.163 can be expressed as simple difference relations along 1,3 (upper

sign) and 2,3 (lower sign). Thus
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sin/u. sin@
cotMy (T - T) - - 1
2 (By - Pp) - (837 8+ 5(E
(1q1 1 1

) (x3 - xl) =0 2.164

and
COt/LZ _
- (p3
6,9,

sin/(zsingz

yzcos(G2 +/u 2)

These determine Py and 93.
The streamline through 3 (inclined at 93 to the x-axis) is drawn back

to intersect the initial line at 4. The values of xa,y4 are found from

y, =y

.ﬁ-—:—-——‘: = tan93

x4 x3

Y, =¥, Y, -V

x“ ~ x3 .=l - x2 2.166
4 2 X1 2

and 34, e 4, qa, a,, and , by linear interpolation between the values at 1 and 2.

Since U 34, points 3 and 4 being assumed to be on a streamline, 63, 3 q3,
and P’3 can be determined from the following relations:
P, B, U/¥
=3 = (—1) 3 2.167
[
¥.p
a32 - 33 2.168
€3
Py - P -
——+q,(q, - q,) =0 2.169
Q3 473 4
/L3 = arc sin a3/q3 2.170

This procedure gives a first estimate of conditions at point 3.
Improved values are then found by applying a mean difference process.

The values of X3:Y3 are found from the mean difference relations
) (1) _ (1) i
¥y © vy = % {tan(e /Ll) + tan(O /43 ) (x3 xl)

Yg = Yy = % {tan(e + py) + tan(Q(l) +};(1) } - X,) 2.171
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where (i) denotes values found by the previous intersection. Equation 2.163

is solved as mean difference relations along 1,3 and 2,3 such that

(1)
cot}tl cot,u.3 _ ] { sin/( 1sinG1
15 ..'2 2 (p3-§1)’(e3'01)+3§
y,cos(0. - )
P9, ( W_s) ( 1 1 "M
3 943

(1) (1)

51n[|3 sin93
(i) (1) (1)

Y3 cos(’G3 -/43 )

+ (x5 - %) =0 2.172

and
(1)
coy 2 cot/u3 _ - sinf(zsinez
= + (P, - P,) +(8,-0)+%
§25§ _'(i)’(i)z 3 2 3 2 y,c0s(6, +/u2)
3 93

%

(1) (1)
sin cos®
( )}3 3 (1) (x3 - Xz) =0 2.173
Y3 cos(G /a )

The location of point 4 is thus found by

+

y3 - y4 = % {tan93 + tan%} (x3 - xa)

xltanG2 - xztane1 + xl‘(tane1 - tan92)

tang, = =
4 X - X,
L]
p - &
1%
Yo = Yo (x1 ) (x, - %)) 2.174

Again 34’ é 4’ ﬁ&, a,» and "4 are determined by linear interpolation and

F3’ a4, ‘63, and 73 by relations connecting pt. 3 with pt. 4., Equations 2.167
and 2,168 determine @ 3 and a5 4, is found from
=(1)

(Fy - B (5= + %) + (@ +3,)(T; - ) =0 2.175

S P3P

Equation 2.170 then determines /4.3.

The whole mean difference process can now be repeated using the revised
values of quantities at point 3. The iteration is continued until the differences

between values at the beginning and end of an iterative cycle are negligible.
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The procedure at a shock point varies in that the new properties are
found from the solutiom of the - characteristic of the last internal point and
the shock relatioms.

In Figure 6 point S is a known point on .he shock and point 2 is an
adjacent internal point. Point 3 is found as the intersection of the shock
tangent at S and the characteristic tangent at 2. Equation 2.165 and the shock

relation written in difference form as

' 2
2p tand sec 6,(8, - 8,) = F'(;ZS)(P3 - p)

where
£-1 2 ZIM: - (r-1+ W+ L
F(¢)= XM2-1+1 (Y+ )2+ (¥-1
. O

and 'l = p/po

are used to compute 53 and 93 (Suffix O refers to free stream conditions). ‘P3

is determined from the shock relation

P _(qenl+¥-n 2 176
g (- DE+FFD '

a3 is found from

2 - -
a, = pa/lF 3 2.177

and M3 from the relation

L(‘l+ 1) L+ (Y- 1Y - 1’-('4‘2 -

T[¥-DE+ (¥+ 1] 2.178

Hence q3 = M3a3 and‘/‘3 = arc sin (1/H3). The new shock angle is now found

from the relation

MOZ mw-“*l)i"(x'l 2.179

In order to perform a mean difference iteration, equation 2.173 is used with

the following shock equation;

‘50{tanossec295 + tangg )gec? e(i)}(e -8 +% {F (L) +F (L )}(p3 - F,)  2.180

The procedure at a body point is different in that the intersection of
the positive characteristic from the nearest interior point and the body, a
limiting streamline, is used.
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In Figure 7, B is a known body point and 1 is an adjacent interior point.
C is a new body point where conditions are to be determined.

First, since Qc is known as the slope of the body at point C, p. can
be found from equation 2.164. (C is the known point of intersection of the
+ characteristics tangent through 1 and the body). The remaining conditions at

C can then be determined; ¥  from 2.167 (note that ',C = XB), a, from 2.168

C
and 9 from Bernoulli's equation. This can again be improved by a mean difference

process using equation 2.172.
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2.7 LOW REYNOLDS NUMBER EFFECTS

A group of effects appear and require consideration at high altitudes,
i.e., when the Reynolds number drops below the values where separation of the
shock layer flow into distinct inviscid and boundary layer regions is clearly
permissible. These effects have been studied since 1954, when Ferri and
Libbycla»first mentioned the possibility of an interaction between the vor-
ticity generated by shockwave curvature at the nose of a blunt body and the
surface-shear generated vorticity (the boundary layer). This particular ef-
fect, it turns out, is only one of several effects of equivalent order (al-
though quantitatively the most important one for blunt spheres in hypersonic
flow). The assemblage of effects is frequently referred to as "yorticity
interaction" or, more precisely, as "second order effects'.

Consideration of second order effects is necessary for the high
altitude condition of Project FIRE for two reasons. First of all, the con-
vective heat transfer, as calculated from boundary layer theory, is modified
by second order effects. At the Reynolds number associated with the high al-
titude case, this modification might be significant (up to a 30% increase by
heat transfer rate according to some theories). Secondly, the thickening (at
low Reynolds numbers) of the region wherein viscous and heat conduction ef-
fects are important (which is the basic reason for the breakdown of the inviscid
flow-boundary layer distinction) causes a significant region of temperature
and density gradients. Estimates of gas-cap radiation, which ordinarily are
based on properties determined by an inviscid-flow field solution, may be
significantly in error if a substantial part of the gas cap is affected by
the presence of the highly-cooled wall. It is noted at the outset that, in
our situation, the second order effects are augmentive to convective heat
transfer and (ordinarily) attenuative to radiation heat transfer. However,
the possible presence of particular important radiating species at lower tempera-

ture prevents generalization of the latter statement.

What we are concerned with here is seen most clearly by following

(2.64,2.65,2.66)

the procedure used by Van Dyke and others, i.e., examining the

hierarchy of successive approximations for finding an asymptotic solution to
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the Navier-Stokes equations for viscous flow at large Reynolds number. This
singular-perturbation problem is treated by the method of inner and outer

@.67)

expansions. Two complementary asymptotic expansions are constructed
simultaneously, and matched in their overlap region of common validity.
The perturbation parameter, in order to satisfy the boundary conditions,
is proportional to a negative half power of the Reynolds number and for

the hypersonic case, turns out to be(2.68)

_ I:(r- 1) MZ:JW/Z

Re

€

for a gas obeying a power-law temperature-viscosity relationship with the
exponent set equal to w.
The outer expansion, valid outside of a region of 0(€ ) next to

the body is of the form

ﬂ(s,n,é )Nﬂl(s,n) + & ﬂz(s’n) 4+ -

where @ is any pertinent flow variable and s and n are the geometrical co-
ordinates, say, along and normal to the body surface. The corresponding inner

expansion (valid in the region of 0(€ ) near the surface) is of the form

8 (s,m, € )~ PL(s,N) +€DL(s,N) + ---o-

where N = n/g¢ . When these expansions are substituted into the Navier-Stokes
equations and terms involving like powers of (€ ) are collected, the inner and
outer expansions can be matched by assuming that the inner expansion for large
N behaves in the same manner as the outer expansion for small n.

The first approximation in the outer expansion gives the inviscid flow
equations, i.e., the equations which we actually solve (albeit by an approximate
method) in the digital computer program. The second approximation in the outer
expansion gives another set of inviscid equations which describe a perturbed
outer flow past a body whose normal coordinate is increased by the displacement
thickness of the first-order boundary layer.

The first approximation in the inner expansion gives the Prandtl

boundary layer equations, which have been solved in the stagnation region to
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give those heat transfer results which we use and present. The second ap-
proximation in the inner expansion gives a number of additional effects
known as second order effects. These effects can be identified with longitu-
dinal curvature, transverse curvature, velocity slip at the surface, temperature
jump at the sufface, entropy gradients in the (inviscid) outer flow, stagnation
enthalpy gradients in the outer flow and displacement of the outer flcw by the
inner or boundary layer flow.

Numerical calculations of the magnitude of all these effects have
been accomplished only by Van Dykefz'&» Maslegzﬂ» and Lenardfz'x» Van Dyke(2'71)
points out that both Maslen's and Lenard's matching procedures were incorrect
in that they failed to include the pressure change due to displacement. Ac-
cording to Davis and Flugge-LotzSz'&sLenard's values have since been corrected
but have not been published as yet. Thus, at the present time, Van Dyke's re-
sults seem best to be used to estimate the relative magnitude of the various
second order effects.

Taking note of the corrections listed in Reference 2.71 (p. 227), Van
Dyke's calculationchlﬁgf the magnitude of second order effects for a highly

cooled sphere at infinite Mach number take the form

Slip &

Ent. Long. Trans. Temp.

Grad. Curv. Curv. Jump
—9 -1 +(0.58 - 0.090 + 0.146 - 0.157)€
9b.1.

Total

3 _ -1 +0.483 € _ 2.181
.1,

where q is the best transfer rate and Q1. is the corresponding heat transfer
rate calculated from boundary layer theory. While external vorticity is the
dominant effect, it is seen to be not the only one.

Before accepting Van Dyke's result and using it, we should recognize
its limitations and compare it with existing experimental data.

To take note at this point of the absolute magnitude of these effects,
we compute € for the Project FIRE high altitude conditions to be 0.107
based on a combined Reynolds number Re = \k.)l f:, Zy*o = 174. Thus, the overall
magnitude of the second order effect is about a 5% increase in stagnation region

heat transfer rate, if we accept Van Dyke's results.
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Van Dyke did not calculate the displacement effect because the
displacement thickness was so small for the highly cooled body he considered
(surface-to-stagnation-temperature ratio of 0.2). That this simplification is
generally invalid was shown ciearly by Davis and Flugge-Lotz.(2'68)rhey found
that the pressure gradient associated with displacement can change the magnitude
of the entropy gradient effect by as much as a factor of two. Fortunately,
they also found that the change is indeed negligible for highly-cooled bodies.
Thus, we can safely ignore the displacement effect for our highly cooled body,
while taking note of the fact that the vorticity interaction effect might be
doubled if a situation exists wherein the body temperature rises to near-
stagnation values.

To compare Van Dyke's result with those of others, we make reference
to the thorough calculations of the vorticity interaction term by Davis and
Flugge-Lotzﬁz'asand to the review by Van Dykefzjl) Apart from Van Dyke's, the
other complete analyses of second order effects are those of Lenard(zj@and
Maslen52'6a Both fail to include the correct displacement effect, but this
doesn't matter for the case of a highly cooled body. 1In this case, their
results agree very well with those of Van Dyke. By far the most complete
analysis of the vorticity effect itself was carried out by Davis and
Flugge-Lotz.a'&D They considered a variety of surface-to-stagnation tempera-
ture ratios and demonstrated the importance of displacement-induced pressures
as the temperature ratio increases. Again, good agreement with Van Dyke's
result for a highly cooled body is found. Of the other theories surveyed by
Davis and Flugge-Lotz and by Van Dyke, only those of Ferri, et.alKZJa and
Cheng(ZJs)give significantly different results. The calculations of these
authors give a vorticity interaction effect about four or five times as large
as that calculated by the other authors for Project Fire conditions.

Comparison with experiments is something less than conclusive in
resolving this difference because of the differences in experimental data,
no doubt due to the considerable difficulty in making these experiments. A

(2.73

set of experiments by Hickman and Giedt and additional experiments by
Tong and Giedta'ﬂoin the University of California low density wind tunnel
(supply air at ambient temperature) give results that agree well with Van Dyke
(and the other authors cited previously whose calculations do not disagree
significantly). The scatter in the data is sufficient to prevent any choosing

among these theories and calculations. Eq..2.181 above fits Hickman's data
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very well, although an estimated re-evaluation of the theoretical result by
Van Dyke(ZJQ%o correspond with Hickman's experimental conditions (lower Mach
number and higher temperature ratio) gives a second order correction low by a
factor of two or three, .

Other experimental results were obtained by Ferri, et.al.(2'72) in a
hypersonic wind tunnel wherein the supply air was heated to a temperature of
2300°R. Ferri, et.al.'s. results agree with their theory, which as already
mentioned, gives an effect about five times as large as that expressed by
eq, 2-181, However, the theory of these authors includes only the
vorticity (entropy gradient) effect. Thus, it seems coincidental that their
experiments (which necessarily include all second order effects) agree with
their theory.

To summarize these comparisons, then, there are two distinct sets of
theories and experiments., One assemblage gives a second order increase in
convective heat transfer of about 5% for high altitude Project FIRE conditions;
the other set predicts an increase of 25-30%. The stronger theoretical founda-
tion of the former results leads us to preference of this estimate. Perhaps
the results of the Project FIRE experiments will settle the disagreement
conclusively.

However, careful note must be taken of the fact that real gas ef-
fects (in the form of vibrational non-equilibrium) might be present in the
experiments of Ferri, et.alSZ:72) Also, note that all available treatments
of second order effects apply to perfect, non-reacting gases. Surely, real
gas effects will be abundant in the Project FIRE experiments. The convective
heat transfer can be affected not only by the real gas constitutents, per se,
(i.e., through modified transport properties, species gradients, surface re-
actions, etc.) but also because of a new and apparently unconsidered effect,

reaction-generated vorticity. Finite rate reactions generate entropy (at a

rate proportional to the square of the deviation from equilibrium and inversely
proportional to the reaction relaxation time). By Crocco's theorem, reactions
also generate vorticity. This vorticity then can interact with the surface-
shear generated vorticity in a presently undetermined fashion. These con-
siderations make the Project FIRE heat transfer data at the same time more

interesting and more difficult to analyze and interpret.
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So far, we have considered only the effect of low Reynolds numbers
on convective heat transfer. As mentioned earlier, the effect of wall cooling
may modify the radiative heat transfer to a significant extent. We can
estimate the approximate physical extent of the region of important viscous
effects by noting that, if the shock layer thickness is of order unity, then
the first-order boundary layer thickness is of order (€ ) and the shockwave
thickness is of order (62). (For reference, the perfect gas shock layer thick-
ness is about 7% of the body radius for the conditions of the high altitude
case). Thus, we are considering a situation just about at the boundary between
Probstein's(2 76,2.77) ®yorticity interaction" regime and the 'viscous layer"
regime. The shockwave is reasonably well approximated as a discontinuity; the
region of viscous effects is iarge for the boundary layer approximation, yet
small enough that an essentially inviscid region does exist in the shock layer.

To get a semi-quantitative estimate of the temperature profile, we

(2.8)

can use the viscous layer calculations of Ho and Probstein or Levinsky and
Yoshihara€2'79) These authors use the Navier-Stokes equations in a form
simplified by the primary assumptions of a thin shock layer (compared to

body radius) and local flow similarity. The resulting system of ordinary
differential equations are integrated numerically with either free stream(2'79)

or behind-the- shdcn(2'78)

outer boundary conditions.

Estimated temperature profiles, obtained by interpolating and
extrapolating in the plotted numerical results of these authors, are
shown on Figure 8. Generally good agreement between the two results is
found, at least good enough to permit estimates of the resulting modifications
in shock layer radiation. Again, it should be noted that these results are for
a perfect, non-reacting gas. Comparable profiles for real gases remain to be

determined.
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3. DISCUSSION OF RESULTS

The methods discussed in the preceding section were used to compute
the convective and radiative fluxes to an Apollo configuration at two points
in its re-entry trajectory. These points were specified to be at 171,111 feet
and 34,582 ft/sec and 259,113 feet and 37,439 ft/sec, altitude and velocity
respectively and both at zero angle of attack. The input parameters corresponding
to these conditions are given in Table III. Also given were the exact con-
figurations of the vehicle at the two positions as shown in Figures 9 and 10.
These computations are referred to as Cases I and III respectively and as shown |
in Section 1, Case I is essentially in equilibrium while Case III is essentially
in non-equilibrium,

The results of the computations for Case I and Case III are shown in
the appendix. For each case the thermodynamic and chemical state of the case is
defined as a function of position in the shock layer and the resulting heat flux
distributions, both convective and radiative, are shown. These results were ob~-
tained using the methods described in Section 2. Sharp corner sonic point
boundary conditions were used in both cases. The smooth corner saddle point
boundary condition was initially utilized in the Case I solution, but the sonic
point was found to be so close to the change in body curvature at the corner,
that the sharp corner convergence scheme, which is more rapid and hence more
economical than the saddle point scheme, was used. In each instance figures
describing the coordinate system used are included. Following is a discussion

of the more important features of these results.

3.1 Case I - Equilibrium Flow

The shock layer thermodynamic properties, pressure (Atm),
temperature (OK), and density (gm/cm3) as obtained from the first approxi- 1
mation solution are presented graphically as a function of the body
coordinate s, n (see Fig. 14) in Figures 16, 17 and 18 respectively. As
noted previously 1in Section 2.1,the first approximation solution gives
directly the shock and body properties, but only satisfies the conservation ‘
equations across the shock layer on an integrated or mean basis. Thus,

when the shock layer properties are determined from the integral relation

approximations, some deviation from a higher order direct or inverse solu-
tion would be expected. As far as it is known there are no inverse or
direct sharp corner blunt vody thermochemical equilibrium solutions in

the literature with which to compare these results. The reported res:.lts

have beig i?mpared with an M = 19.36 inverse equilibrium spherical hody

result and with Lees' survey results in reference 3.2. The property
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distributions follow the inverse solution results throughout most of the
flow field, but deviate from the inverse solution in the stagnation point
and sonic regions. The linear property distribution found in the stagnation
region is slightly in error since it can be shown that if the velocity is
linear in this region (the inverse solution gives a linear velocity and

Lees predicts this result), the slope of the pressure and density curves
should approach zero at or near the body. The Case I property distribution
errors introduced by the first approximation solution are very small, however,
because the properties along the stagnation streamline do not vary much
from the shock to the body.

The first approximation property distributions obtained in the
region of the rounded shoulder sonic point, although adequate for radiation
calculations, were not accurate enough to start the characteristic solu-
tion. This deficiency was alleviated by replacing two of the integral
relation approximations by the exact normal momentum equation and the

energy equation. This alternate method is discussed in Section 2.6.

Before leaving the discussion of the shock layer properties,
several points should be mentioned. At the Case I velocity and altitude,
the shock layer density and temperature are such that the gas is essentiallyv
completely dissociated and is about 77 ionized on the axis and 1% near

(3.3) shows that the

the corner behnind the shock. Hypersonic flow theory
density ratio across the shock is only a function of ¥ . Since, as the
shock becomes more oblique, the temperature decreases and thus the degree

of ionization decreases, the 8 varies with body angle for this case.

It can be shown that the effect of temperature is dominant and decreases ‘ s
thus the increasing density ratio (see Fig. 18 ) as a function of body angle.
The final feature to be noted is that the shock is nearly concentric with

the front face of the body as would be expected for the high Mach number

flow of this problem.

The pressure, temperature and density distributions along the
body which were used in the convective heat transfer solution are given
in Figures 11, 12, and 13. An examination of the pressure distribution
in Figure 11 indicates the strong influence of the sharp cornered shoulder
on the pressure and, hence, all the property distributions. The equilibrium
pressure distribution on spheres (in contrast to sphere caps with sharply
rounded shoulders such as the Case I geometry) has been calculated at hvper-

. 3.6
sonic velocities .y btoth 1nverse(3'4) and direct methods (3.5, ) and
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can be shown to be closely approximated by modified Newtonian solution

with the centrifugal correction. The effect of the sharply rounded shoulder
sonic point on the body properties is to cause a much more rapid decrease

in properties than would be expected in the case of a complete sphere. In
addition to causing a rapid change in body properties, the sharp corner
causes the velocity gradient at the stagnation point to be larger than the
complete sphere and the Newtonian result. Since the stagnation point

heat transfer is proportional to the square root of the velocity gradient,
for a given altitude and reentry velocity, the sharp corner sphere stagnation
point heat transfer is also larger than the complete sphere case. This
result is not unexpected, however, and has been observed experimentally by
Boison and Curtiss(3'7) and predicted theoretically by Probstein.(3'8) In
the sharp corner solution, the characteristic dimension is not the radius

of curvature at the stagnation point as in the Newtonian result, but rather
the distance from the stagnation point to the sharp corner. This functional
relationship between the sharp corner and the Newtonian velocity gradient

(3.9)

can be shown from Probstein's results for a circular disc to be

dv_ . _1 d . In the first approximation solution, the stagnation
ds s \dsMNewtonian

point velocity derivative was found to be twice the Newtonian value and
hence the heat transfer rate is approximately 407 larger than the Newtonian
prediction. Although the velocity gradient was expected to be larger than

(3.7)

the Newtonian value, the factor of two seems somewhat high and may be

due to approximations inherent in the one strip integral relation solution.

The convective heat transfer flux distribution on the blunt face is shown in
Figure 24, The distribution was calculated from Lee's local similarity re-

ults(2'60) which give the ratio heat flux at any point to the stagnation

point value as

q —~ pv_sins

. s 2 R
qos ///;v sin"s ds

The rather unconventional form of the heat transfer distribution as compared

to a Newtonian results occurs primarily because of the form of the body velocity

distribution obtained from the first approximation solution (see Figure 24a.).
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The fact that the rate of increase of velocity with body coordinate, s,
is greater in the region of the stagnation point than at larger values of
s, rather than constantas is assumed in the Newtonian solution, appears to
be the primary reason for the unconventional distribution. Since the
velocity derivative obtained at the stagnation point appears to be some-
what large, the "bump'" in the heat transfer distribution obtained in the

region of the stagnation point is probably exaggerated.

The method of computing the radiative flux shown in Figures 26
and 27 makes use of the assumption that the gas is optically thin at all
wave lengths; however, it is apparent from Figure 27 that integrated intensity"
in the ultra-violet would exceed black body if computed accordingly. Thus
self aiusorption effects_are important in this wave length region and should
be considered. Since a numerical analysis of radiation including self-
absorption was not within the scope of this study, a simple approximation
was used, this being that the radiation in this wave length region was
equal to the black body value. This assumption is felt to “e warranted
in that the path length over which radiation could reach the body is a
small fraction of the standofi distance (approximately 1/6). This distance
is based on an absorption cross section of 10-17 cm2 from Bates, et.al.(3'9)
and a number density of absorbers typical of stagnation conditions (i.e.,
L4 ox 1018). The total flux to the various points on the body were corrected

bty the same proportion as required at the stagnation point.

It is of further interest to note that since the temperature and
density were essentially constant taroi:ghout the gas cap, one could compute
the spectral and total radiative flux to the stagnation point on the basis
of a single point computation. This was done by solving Eqn. 2.157 with
the assumptions of constant intensity and a concentric shock and body relationm.
The spectral distribution so computed (using the distribution at the point
at a body angle of 0.0l and next to the body) is shown in Figure 27. The
points placed on this curve were computed by the actual volume integration

over the shock layer. The agreement is seen to be excellent.

The solution reported here for the heat flux over the back of the
body is in serious question. In order to allow a characteristic solution
the flow was assumed to be attached to the back of the body. In addition,
the chemistry in the inviscid field was assumed frozen at the corner
and the gas immediately behind the shock was assumed to be in a pseudo

equilibrium. By this is meant that the 3’-for the shock was set equal to
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1.13, which is the value of the 5 for the equilibrium gas behind the
shock at the corner, and the composition was held frozen with respect to
the corner values. The effect of each of these assumptions on the con-

vective and radiative fluxes is considerable.

The assumption of attached flow seems to be in error but no
direct analytical or experimental information is available. A separation
at the corner may be affected by two mechanisms, by the inability of the
inviscid flow to expand sufficiently rapidly, or by a viscous boundary layer
effect caused by the steep external pressure gradient. The former can be
evaluated by looking at the maximum Prandtl-Meyer expansion angle and
comparing this to the corner angle. Although this criterion indicates
no separation, experimental data at lower Mach numbers and with helium and

air definitely show a separation with this configuration.(3'10-3'17) This
might indicate a boundary layer fed separation, the analysis of which is

not within the scope of this contract.

The effect of a separated region over the afterbody would
most likely increase both the convective and radiative fluxes. If one
assumes the separation streamline to be in the direction of or closer to
the body flow, Chapman's shear layer stability criterion indicates that
the layer will be laminar over the entire body. Applying Chapman's free
shear layer heat flux approximation, the flux is then about half the flux
computed for a pseudo body having the contour of the separated region.
Since the convective flux is such a strong funetion of the body density
distribution, manifested by the enormous decrease in convective flux for
the’attached flow case, it is clear that even half the flux for the much
less expanded separated flow may be of considerable importance. Further,
the increased density of the less expanded flow will increase the radi-
ative flux by the ratio of (2 for a frozen flow and ¢ for an equilibrium
flow.

The assumptions concerning the chemistry will have a greater
influence on the radiative flux than the convective as the primary change
will be in the number densities of the radiating species rather than the
gas properties of the field. Since the expansion will still be severe
even considering a separated region, the frozen assumption near the body

will be good, but the chemistry of the flow entering through the shock
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beyond the corner will be a shifting non-equilibrium flow from which a
radiation overshoot may exist due to band radiation. All of these effects
are difficult to evaluate without a better analysis of the separated flow

region which is not within the scope of thisstudy.

As indicated, the flow over the afterbody was computed using the
above assumptions and from this the convective flux computed by continuing
the boundary layer analysis around the corner. Because of the serious un-
certainties in the flow field conditions, it was felt that only an estimate
of the radiative flux was warranted. For this purpose a point on the after-
body just beyond the small radius section was considered. The radiation
from a right cone having an altitude normal to the body and extending to

the shock was computed as follows. Consider the flux equation and Figure 28.
dq =1 =5 dV =1 cos @ sin 8 dr do d«
By a Jacobian transformation to the coordinates of the cone this becomes

dg =1 sin ®©d hd#ede

If we assume I to be a function of h only and relate this to the point

radiation at the corner by the following

_¢ Y
= Icorner (' Pcorner )

(See radiation discussion and note that the radiation is primarily ion

free-bound) one obtains

h
cone
L in® do \ p (hXh
q = __EZ— 2w sin c
corner ° K -
1 2
or q =2TW (1l - cos econe) (—E-z) ( (h) dh
corner

The final integral was found graphically.

Before computing the radiative flux to the rear of the vehicle
the effect of self absorption had to be considered particularly in the ultra
violet. As was done for the gas cap, the path required to make the absorption

coefficient equal to 2 was computed from the following

Qa Na L=2

Qa’ the absorption cross section was obtained from Bates

(3.9 and the
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number density obtained from the characteristic solution (a value near
the body was chosen). The result showed a maximum path of 0.3 feet, thus
the U-V radiation will be limited by self-absorption. Since the ratio of

visible to U-V radiation is about 1.5, it is clear that only the visible need

be considered in this approximation.

Finally, using the visible portion of the corner radiation as the

5 BT d is sho in Figure 29.
L. orner’ the flux was computed as 15 B U/ftz-sec an shown g
Again it is well to note the serious uncertainties in both the convective

and radiative flux over the afterbody.

3.2 Case III - Non-Equilibrium Flow

The state of the gas at various points on the body and shock is
shown in Figures 30, 31 and 32. These results were obtained using the integral
relation solution previously discussed which makes use of the assumption
that only the translational and rotational degrees of freedom equilibrate
through the shock but does allow the integration of vibrational and
chemical rate equations along the body. Previous to running the complete
solution, an equilibrium solution for Case III was obtained in order to
compare the available chemical reaction rates at the temperature and density
of the flow with the rate required to maintain the equilibrium. This comparison
indicated that the flow along the body was essentially frozen at the stagnatioﬁ
point equilibrium composition and thus this additional assumption was used
in the reported solution to reduce the cost of the computation of the shock

and sonic point locations which are found by iteration.

Based on this frozen solution for the shock and body the streamlines

were located within the shock layer and the chamical rate and flow equations

integrated along streamlines to determine the state of the gas. The integration

results showed that the normal gradients in the layer were very non-linear

as evidenced in Figure 35. The velocity component normal to the normal was
found to change little between the shock and the body and thus the assumption
of linear @ v seems to be questionable. A more accurate answer might be
obtained by a multiple strip method or a more approjriate choice of ''body
conditions." Since the density gradient near the body is ver; steep, one
might choose a point just outside the body as one of the limits in the

linearization without greatly changing the problem. In essence, this would

-82-




—_—— L -— L L L W Wy Ty

be a two strip approximation in which the inner (near body) strip is negligible
in size. The very steep gradients of specie composition near the body further
substantiate the assumption of frozen chemistry over the body. It is apparent
that at the temperature and densities of the problem the velocities (i.e.,

the reciprocal of the time scale) must become very small to allow the

chemistry to approach equilibrium.

Two solutions for the distribution of the state properties along
the body were obtained. The first solution utilized the first approximation
integral relation form of the 6-momentum equation (see p. 28). The con-
verged solution indicated that there was a slight increase in density with
increasing body angle over a portion of the subsonic flow field. Since the

subsonic flow on the body is isentropic with frozen chemistry, the density

should decrease with increasing body angle. The source of the problem
was found to be the inaccuracies introduced by the first approximation
@-momentum equation. When this equation was replaced with the Bernoulli
equation, which is exact along the body streamline, the more reasonable
density distribution shown in Figure 32 were obtained. The convective

and radiative heat transfer calculations were run before this density
inaccuracy was resolved. The convective heat flux solution was rerun
(Figure 57) with the more accurate body properties and was found to be
approximately 10% lower than the initial calculation. The new flow field
solution should not change the radiation results appreciably, however,

since the molecular collisions occurring in the non-equilibrium shock layer
are primarily binary and the r adiation will be independent of density.(3'18)

The radiation calculation was not rerun due to shortages in time and funds.

In the previous discussion of the Case I solution it was noted
that the convective flux may be somewhat high due to the linear approxi-
mation. It should be noted that these same arguments apply in the Case III

solution.

The radiation results shown in Figures 59 and 60 were obtained
by integrating the volume emission over space by using the computed volume
emission at S of 1.0, 0.9, 0.75, 0.5 and near the body along various nor-
mals. The choice of these locations was predicated on the assumption that

the flux would peak between s =0.5 and the shock due to non-equilibrium
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band radiation and then be relatively constant from 0.5 to the body. An
examination of the computed results shows that this is the case (see Figure 61).
A point near the body was chosen because of the very steep gradients near

the body which made the radiation from the gas at the body streamline non-
representative of any volume of consequence in the shock layer. In addition,
the radiation at the shock was taken as zero. This assumption is based

on the shock tube results discussed in Section 2.4 and ignores any precursor
ionizatien by ultra-violet radiation. Since the radiation in the ultra-

violet is very small (i.e., very little continuum), the precursor ionization

is expected to be less than 0.01% and thus negligible.

The non-equilibrium radiation that was determined was found to
be primarily a result of band emission. This is the result of the steep
properties and concentration gradients near the body in that the major
portion of the shock layer is far from equilibrium. The continuum radiation
produced by ion free-bound transitions which dominated at the equilibrium
conditions of this flow is thus produced over a comparatively small volume.

(3.18) at the

The results obtained have been compared with those of Page
conditions of this flight and found to be in excellent agreement. Page,
by the use of binary scaling of his experimental results, predicts approxi-
mately 15 watts/cmz; our results show about 6 watts/cmz. In either case

this flux is small in comparison with the convective flux.

As discussed in Section 2.7, the increase to the convective
heat transfer by second order effects is about 5% based on the best current
theory. Further, the assumption of the viscous effects being limited to a
boundary layer which is small compared to the shock layer thickness seems
to be reasonable for this case. Consequently, the solution reported
herein which is based on a boundary layer solution for the convective flux
and does not correct for viscous effects in the shock layer in computing the

shock volume properties is considered to be adequate.
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TABLE II

MOLECULAR VIBRATION AND DISSOCIATIgN CONSTANTS
AND HEATS OF FORMATION (0K)

3 u
Species, j 'ﬁ‘? ovj oj —DJ’
cal/mole K cal/mole
0 58980
N 112520
e 0.0
0, 0.0 2335  .039 117770
N, 0.0 3541 .032 224815
NO 21480 2786  .037 149744
Not 234880
of 277900
2
N; 359310
o* 373030
NT 448040
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CONVECTIVE HEAT TRANSFER DISTRIBUTION

TABLE VI

CASE I
N X Y S QC 9
(ft) (ft) (ft) (Btu/ft“-sec)
1 0. 0. 0. 759.6330
2 -0.0016 0.0921 0.0922 758.9651
3 -0.0064 0.1842 0.1843 738.1123
4 -0.0101 0.2301 0.2304 711.8413
5 -0.0145 0.2760 0.2765 689.7961
6 -0.0226 0.3446 0.3456 662.5203
7 -0.0325 0.4130 0.4147 646.4972
8 -0.0442 0.4811 0.4838 636.3246
9 -0.0577 0.5489 0.5529 629.2803
10 -0.0730 0.6163 0.6221 623.7497
11 =0.0900 0.6833 0.6911 619.2725
12 -0.1087 0.7498 0.7603 615.8250
13 -0.1292 0.8158 0.8394 612.2538
14 -0.1514 0.8813 0.8985 607.0268
15 -0.1611 0.9830 0.9223 603.9644
16 -0.1805 0.9585 0.9811 589.4379
17 -0.2055 1.0000 1.0295 441.8734
18 -0.2888 1.0310 1.1184 144.,2551
19 -0.4000 0.9850 1.2387 10.5942
20 -0.6000 0.8550 1.4773 7.5002
21 -0.8000 0.7250 1.7158 5.6779
22 -1.0000 0.5959 1.9538 4,6813
23 -1.2000 0.4660 2.1923 4.1437
24 -1.5000 0.2711 2.5502 3.9157
25 -1.8000 0.0761 2.9080 1.5887
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TABLE Vit

DISTRIBUTION OF RADIATIVE FLUX OVER RE-ENTRY BODY

CASE I 2
sBody’Radians RBod ,Ft QB’ BTU/ft" -sec
’ 0 2.6417 323
.025 2.6417 304
.075 2.6417 292
.130 2.6417 255
.170 2.6417 233
.230 2.6417 190
.330 2.6417 93
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TABLE ViUl

SPECTRAL INTENSITY OF RADIATION TO STAGRATION POINT

CASE X
QB
@ crn-1 watt-cm[ftz
0.20000 + 004 .334 + 01
0.10000 + 005 .224 + 01
0.18000 + 005 .134 + 01
0.26000 + 005 .778 + 01
0.34000 + 005 .484 + 01
0.42000 + 005 .408 + 00
0.50000 + 005 .216 + 00
0.58000 + 005 .137 + 00
0.66000 + 005 .860 - 01
0.74000 + 005 .558 - 01
0.82000 + 005 .934 + 00
0.90000 + 005 .830 + 01
0.98000 + 005 .376 + 01
0.10600 + 006 .168 + 01
0.11400 + 006 .735 + 00
0.12200 + 006 .318 + 00
0.13000 + 006 .138 + 00
0.13800 + 006 .672 - 01
0.14600 + 006 .250 - 01
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NON-EQUILIBRIUM GAS PROPERTIES (CASE III)
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TABLE XI

CONVECTIVE HEAT TRANSFER DISTRIBUTION

X

(fe)
0.

0.0001
0.0005
0.0010
0.0019
0.0029
0.0042
0.0057
0.0075
0.0095
0.0117
0.0141
0.0168
0.0262
0.0377
0.0670
0.1045
0.1501
0.1850

CASE 111

Y e
0. 0.
0.0268 0.5002
0.0535 0.9998
0.0803 1.5002
0.1070 2.0001
0.1338 2.5000
0.1605 3.0310
0.1872 3.5138
0.2139 3.9752
0.2406 4.,5007
0.2673 4.9941
0.2939 5.5009
0.3206 6.5118
0.4003 7.4953
0.4797 9.0
0.6376 11.9980
0.7937 14.9980
0.9477 17.5053
1.0489 20.0
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QC

(BTU/ftz-sec)

144.1527
144.1448
144.1211
144 .0814
144.0260
143.9547
142.8850
141.8154
141.1936
140.6951
139.9140
139.2037
138.4189
135.2683
132.9333
128.2417
125.6401
123.4432
118.8414




TABLE XII

CASE 1III

DISTRIBUTION OF RADIATIVE FLUX OVER RE-ENTRY BODY

) 2
@ (Radiang) gBod (Ft) QB(BTU/ft -gec)

0.0 3.0667 5.32
.04 3.0667 5.14
.06 3.0667 5.23
.12 3.0667 5.30
.20 3.0667 5.19
.28 3.0667 5.09
.321 3.0667 5.19
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TABLE XIII

CASE 111

SPECTRAL INTENSITY OF RADIATION TO STAGNATION POINT

gcm-ll QB (watt-cm/ftz)
0.20000 + 004 177 - 3
0.10000 + 005 .248 - 2
0.18000 + 005 313 - 1
0.26000 + 005 264 + 0
0.34000 + 005 438 + 0
0.42000 + 005 367 - 1
0.50000 + 005 173 - 1
0.58000 + 005 241 - 1
0.66000 + 005 665 - 4
0.74000 + 005 784 - 5
0.82000 + 005 781 - 4
0.90000 + 005 145 - 2
0.98000 + 005 123 - 2
0.10600 + 006 .750 - 3
0.11400 + 006 292 - 2
0.12200 + 006 121 - 2
0.13000 + 006 192 - 3
0.13800 + 006 .270 - &
0.14600 + 006 .382 - 5
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FIGURE 1. BODY AND SHOCK GEOMETRY FOR EQUILIBRIUM PROGRAM

STREAMLINE
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FIGURE 2. BODY, SHOCK AND STREAMLINE GEOMETRY FOR NON-EQUILIBRIUM
PROGRAM
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FIGURE 2a. CASE III GEOMETRY AT CORNER OF BODY
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FIGURE 4.
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FIGURE 5. CHARACTERISTIC CELL - INTERIOR POINT
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FIGURE 6. CHARACTERISTIC CELL - SHOCK POINT
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FIGURE 7., CHARACTERISTIC CELL - BODY POINT
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APPENDIX A

FFF-102
—
PHiLco CORPORATION A SUBSIDIARY OF Jw%@m@om/z(my,
INTRA-COMPANY COMMUNICATION _ AERONUTRONIC DIVISION
TO: S. Kravitz October 31, 1963
FROM: R. Foster cc: S. Byron
W. Kuby

SUBJECT: Thermodynamic Air Properties for the E. R. Buley

Equilibrium Blunt Body Program

The approximate analytic expressions of the caloric and thermal equations
of state for air required for the equilibrium blunt body have been formulated by
Naumova 1n Ref. 1. The approximate relations give enthalpy, h (cal/gm) and density,
P (gm/cm ) ag functions of pressure, p (atm) (.00l atm &€ p & 1000 atm) and tem-
perature, T ( K)(to 16800 K) The relative error of the approximate functional
relations to the tabular data of Predvoditelev (Ref. 2,3) is reported to be less
than 1%.

The form of approximate functions are d1fferent for temperatures above and
below 2000°K. 1In the temperature range between 2000°K and 16800° K, the polynomial
relationships describing the properties are divided into several temperature
intervals. The required functional relationships are as follows:

1. For air temperatures to 2000°K and pressures between .001-1000 atm,

Ho

P

= (U + o2 +_9.w'9')+D(A°'+Bﬁ)

2n
+ ﬂl +P\)2 + a Vl(p/’l‘j exp (A/T)

1 -n?
n o+ /1450 - 02 (p/1)exp(3/T)

B =

3313

0= T

‘o = 2256
T

ARD 177 V -177-



0.2394, V
0.79, a

0.06179, W
0.0101, b

0.01657, D = 0.06874, A = 59400, B = 113300,
0.00252

o]
it

0.3530, U
0.21, ¢

2. For air temperatures between 2000°K € T< 16800°K and pressures between ‘
.001 atm & p € 1000 atm,

P =G/DR(p,T) = (/TR R

h=hh

where
RM=1/B(1+~+3+2I )
hM=D{-(4+°(+B+SJ’)T+Ao( +Bp+2cr]

D = 2838

¢ = 1100000

C = 166500

and

_ M N mn

R=Z Zumnxy
m=0 n=0

h = V XYy
m=0 n=0 mn

x =(1/3)1n p

The polynomial coefficients, the exponents and the appropriate value of y(T)
for a given temperature range are given in the following tables.

Values of u - at 2000 £ T<€6000, y =-2 + 0.0005T

m
0 1 2 3 4 5

n
0 1.0153 0.0067 -0.0273 -0.0179 0.0167 0.0114
1 0.0171 0.0859 -0.0211 -0.1770 0.0075 0.0978
2 -0,0329 0.0363 0.1714 -0.0258 -0.1336 -0.0108
3 -0.0300 -0.1994 0.1620 0.4999 -0.1213 -0.3126
4 0.0260 -0.0448 -0.1321 0.0793 0.1080 -0.0265
5 0.0176 0.1218 -0.1243 -0.3145 0.1019 0.2055




Values of u o at 6000 € T € 12000, y = -3 + 0.0003333T
o
0 1 2 3 4 5
n
0 1.0067 0.0052 0.0043 0.0095 0.0085 0.0060
1 -0.0050 -0.0184 -0.0246 0.0368 0.0124 -0.0294
2 0.0062 0.0012 -0.0352 0.0035 0.0412 -0.0191
3 -0.0008 0.0618 0.0356 -0.2320 -0.0243 0.1674
4 ~-0.0058 -0.0040 0.0571 0.0105 -0.0696 -0.0053
5 0.0035 -0.0444 -0.0343 0.1619 0.0317 -0.1082
Values of u_at 12000 € T € 16800, y = -6 + 0.0004167T
m
0 1 2 3 4 5
n
0 1.0105 -0.0154 -0.0110 0.0371 0.0052 -0.0255
1 0.0098 -0.0015 -0.0419 0.0105 0.0348 -0.0095
2 0.0000 0.0280 -0.0072 ~0.0930 0.0074 0.0719
3 -0.0025 0.0009 0.0220 -0.0078 -0.0256 0.0082
4 0.0014 -0.0076 -0.0012 0.0308 -0.0002 -0.0226
5 0.0001 0.0019 -0.0019 -0.0061 0.0012 0.0053
Values of v o at 2000 ¢ T € 4000, y = -3 + 0.001T
m
n 0 1 2 3 4 5
0 1.0474 0.0482 -0.0452 -0.0142 0.0293 -0.0022
1 0.0039 0.1668 -0.0149 -0.2393 0.0501 0.1098
2 -0.0917 0.0416 0.2839 -0.2517 -0.1842 0.1841
3 -0.0113 -0.2471 0.2574 0.3980 -0.2921 -0.1513
4 0.0422 -0.0719 -0.1773 0.3054 0.1151 -0.2154
5 0.0141 0.1069 -0.1785 -0.1475 0.2047 0.0254
Values of v, at 4000 ¢ T € 6000 y = -5 + 0.001T
m
0 1 2 3 4 5
n
0 1.0064 -0.0406 -0.0125 0.1517 0.0500 -0.0625
1 ™ 0.0169 0.0363 -0.1986 -0.2031 0.1541 0.1568
2 -0.0102 0.0953 0.0916 -0.1934 -0.0901 0.0655
3 -0.0153 -0.0578 0.1100 0.1604 -0.0779 -0.1081
4 0.0092 -0.0148 -0.0390 -0.0004 0.0281 0.0323
5 0.0018 0.0120 -0.0129 -0 0.0082
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Values of Vo, at 6000 & T € 12000, y = -3 + 0.0003333T

m
0 1 2 3 4 5
n
0] 1.0265 -0.0052 0.0028 0.0134 -0.0089 -0.0137
1 0.0383 0.0294 -0.0135 -0.0645 -0.0045 0.0653
2 -0.0125 0.0465 0.0322 -0.0197 -0.0559 0.0105
3 -0.0132 -0.1051 -0.0744 0.4375 0.0994 -0.3517
4 0.0133 0.0015 -0.0908 -0.0667 0.1219 0.0590
5 -0.0072 0.0822 0.1065 -0.3216 -0.1207 0.2351
Values of Von 2t 12000 € T $ 16800, y =-6 + 0.0004167T
m
0 1 2 3 4 5
n
0 1.0330 0.1089 0.0369 -0.1403 -0.0193 0.0808
1 -0.0278 0.0068 0.1431 0.0145 -0.1080 -0.0150
2 -0.0013 -0.0703 -0.0015 0.2160 0.0051 -0.1577
3 0.0132 0.0080 -0.0720 -0.0229 0.0576 0.0128
4 -0.0004 0.0131 0.0078 -0.0530 -0.0032 0.0371
5 -0.0062 -0.0048 0.0217 0.0193 -0.0018 -0.0176
References
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APPENDIX A (continued)

FFF 105
—

PHiLco CORPORATION A SUBSIDIARY OF Jord‘/(/@m(@om/wmy,
INTRA-COMPANY COMMUNICATION ‘ AERONUTRONIC DIVISION
TO: R. Foster December 27, 1963
FROM: R. A. DuPuis cc: W. Kuby

E. Buley
SUBJECT: Thermodynamic Air Properties for the S. Kravitz

Equilibrium Blunt Body

The following equations represent the results of calculations made in
response to a request from R. Foster.

The functional relations expressing the thermodynamic air properties
( , h, as functions of P and T) for the equilibrium blunt body program have been
pfesented in a Philco Corporation Intracompany Communication, No. FFF-102 (Oct. 31,

1963) from R. Foster to S. Kravitz. In reference to these relationships, the
quantities

o) h
oy A, 2, e (2D,

have been calculated and are presented. In order to facilitate future computations,
all partial derivatives have been expressed with respect to P only, i.e.

(%F)T only.

The results are as follows.

Case 1. For air temperature such that 2000°K £ T, and for pressures between 0.001
and 1000 atmospheres,

(a) 2L, -3
(b) (—aa’ef)P s % - %‘Zva’ﬁp)'r
T

C (e 8D, = 0 {aLP, + 1% }

_a% exp (A/D)

TJ:L_'-’ {F + j:("'}z

where, (_%(_P)T
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28, _ b N%? exp (/1)

and, 2P . .2
2T Vﬁ' {}’[ +J/@’f
and where, .,,'? = -ZOTYI - j{
- 2
and, /&5' = ‘ljzg;_l - .

Note that ' and/e' are not derivatives, but are defined as

o' = (L +n) +an@) exp (3, and

1+ -nHQ) exp D).

=

. 2] 4] - r o o+ ~
h e - (e - 1)" | e - (e - 1)

(@ (=, =ve + W

ST/P [ CIRYY ] Y J

+ [U + GVG + vge« ] + D[A(S—O;)P + B(—%%)P]

(e - 1) (e - 1)

X
or, substituting for (%—T)P etc., gives,

- - 4.0 <] ) )

o h Qe - (e - 1) 9 e - (e - 1) ]
R~ = V8 W o !
CSrle = V8 Y ]* [ ® -2

Ve W o~ AP(A+T) O BP(B+T )
+[U+ -1 ' ® - 1)]' D[ 2 - TPt +_'(r7_)_ (?f?’r]

since, (-%;I‘-)P

P(A+T) , SoX
=" 'LTz_l St
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o P(B+T) , 2
and, (3%)1, = - —('T—Z—)' (‘gé,;).r

The numerical values for all of the constants shown are presented in
the aforementioned memorandum.

Case 2. For air temperatures in the range 2000°KLSTTSI6,800°K, and for pressures
ranging from 0.00l atmospheres to 1000 atmospheres.

M N (@) = . #+3¢29448
(a)(a)=%{R > > uyn-3“5 [( )+(

where the expressions for (

SDZ)T and (—%?%)T are the same as those shown previously,
and

P

2r .. ra-rh
3P'T

N 2P
N

M
) P m_ n-1 =2 [ 2
(b) (%f)P T {RM %0 éO Ymn® ™Y K- RRMDL ( o T)P

+ Ly, +2 X )]} Rt

which, after substitution for ('aaf( x, B ,3")) gives,
P

N
e - { 0 Z:Tk-’o Zeo Cu "R + TR, D[_P(%;D(%)T * E%I)_ &

P C a RnR
+f<5+25><3§>r]'—f}

where K is’ a constant which is a function of the temperature under consideration.
K 1is as follows:

for 2000°K< T<6000°K, K = 0.0005;

for 6000°K ST $12,000°K, K = 0.0003333;
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and for 12,000°K ST<16,800 K = 0. 00041 434:444;
M
2h v y = T
© Bbpn Ly ppe 5

+ (—%%)T+ N%)TJ + AT ,;P) + B(—gé) + ZC( ) } and ( ,/s,b‘))
T

are again as previously defined.

M N

d)(_g_%r=bumz~o go"mnxny 1K+hR{ [( )+(§)

v 55 ¢ Ay + 5y + 200FD, 4 (4 r 4

After the appropriate substitution for ( /5 b’)) has been made, we have,
3 h M N P(A+T)
(aT)P=hM%=0nz""“y K'hR[[ (ap)+
A el
(‘gé-) + 3 T (5 +2 —)( )T] + A:% 1) St BP(HT) )

P (542 )(—sﬁ) -/4+o<4/545f)

where K is the same temperature dependent constant as that previously defined.
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APPENDIX B
FFF-111

PHiLco CORPORATION wsussony o Fore flolor Company,

INTRA-COMPANY COMMUNICATION ' AERONUTRONIC DIVISION
TO: E. Buley March 5, 1964
cc: W. Kuby
FROM: R. Foster M. Holt
SUBJECT: Equilibrium Properties behind a S. Kravitz
D. Piper

Normal Shock and at the Stagnation
Point of a Blunt Body Using Naumova's
Thermodynamic Property Expressions

1. Properties behind the Normal Shock

The equilibrium properties behind a normal shock will be obtained by an
iterative procedure in which J’l is assumed and P, and h1 are calculated from the
normal shock momentum and energy equation. The initial value of @, will always be
assumed to be 6.0 (valid for hypersonic_flow) and subscript ee quantities are given
as input. The equations for calculating Py and h are: o,

A2 (1b/£6%)32 (£t /sec)

p,(atm) = p_ (atm) + (1 - = (1)
1 68080.184 2
| ]
Kl(caugm) = = 7| = L Ly (2)
9.010876 x 10" | a, 2 F1
=
where _ 9
P (6z.¢3) - J
.Pl = — (3)
S

Ideally, the calculated p, and h would then be directly inputed into
thermodynamic property functions ané a new est1mate of P, would be obtained. This
new L. would then be substituted into the normal shock momentum and energy equations
and the procedure would be repeated until the iteration gives a P, consistent to
ip.lZ._ Unfortunately it is not possible to input h. directly into Naumova's gquatiors since
P and T are the independent variables in these functions. Therefore, given h and p, it
is necessary to iterate for T from the equation

h = h(p,T)* (4)

This iteration should be accomplished by bracketing the required T by upper and lower
bounds and converging to the final answer by a quadratic interpolation. These upper
and lower bounds on T, if necessary, can be supplied as input.

1
Superscript numbers refer to references on the last page.

*The functions have been programmed and checked out. See S. Kravitz for the program
call sequence,
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Once the T corresponding to the given h and P is found, T and ; are
substituted into the given equation

P =£Gk,D* )
This new O, is substituted into equation (3) to obtain R, and 2 is in turn sub-
stituted in%o equations (1) and (2) and the procedure is repeated until J°1 is con-

sistent to +0.1%.

2. Properties at the Stagnation Point

At the stagnation point, the known thermodynamic properties are entropy
(S0 = Sl) and enthalpy, ho, where

P T |
S(cal/.,,Ox) =/735+ (%[% '6%%‘* /(% -:—;“-)p dT (6)
p=/(atm) T=27%. 4%
and k= 4/.3/506
where
Pap Teo
S = 1.73500 + / (lP—h - —’} dp + / & oh, dr N
ind T{dp 4P [Te o, T dTpel
1 273.16°K 1‘
Py T
14n L 14dn
s, = s0 L7235+ / ('r > P )T-z;l.),: / T T pl dT (8)
pw /(atm) Te278./4°
and E 2
ho(caI/gm) = = 7 9

9.010876 x 10

The problem is to find the values of ; and T that correspond to the given

- - 0 - -
ho and S.. The first step in the solution is toobracket the actual p_ and To with

upper and_lower bounds. p, will be slightly greater than ; and for gypersonic problems,
p. £ 1.2 p, and hence an upper and lower_bound on p, can be established. An upper and
lower bound for To corrasponding to the Po bounds cgn be obtained from the equation

hy = hy(5,T)
in a manner similar to the normal shock calculation discussed in Section 1.

*The functions have been programmed and ehecked:out. See S. Kravitz for the program
call sequence.
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After obtaining the P, and T bounds, it is necessary to devise a con-
vergence scheme to find the actual temperature (T_) and pressure(p ) at the stagnation
point. There are several possible convergence schemes that might ge utilized and one
scheme suggested by E. Buley is noted here.

Find the mean T and p from their upper and lower bounds using these values
as a first guess for T and p . These values are substituted in the following Taylor
series for S and h in dhich ogly first order terms are retained.

ds
S, S(Tq,pq) + p (Tq,pq) [pa T Pgft 9T ('1‘q,pq){_'Ta - Tq}

- dh ) oh ;
hy = M(Te,Rg) + 40 (Top) [p, - 2] + T Tp [, TJ

where S0 and hO ar»e given and S(Tq,pq) and 3—183 y -3—,1,8- are obtained from (6)

QU

and b, 98 ¢

édp ’ 4T

Therefore we have two linear simultaneous equations for T, and p_ which can be solved
simultaneously to obtain the next guess for pressure and ?empera?ure. The iteration
procedure is repeated until Py and TO are consistent to +0.1%.

are already programmed.*

References
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*The functions have been programmed and checked out. See S. Kravitz for the program
call sequence,
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